Câu 5 (2,5 điểm). Cho tam giác nhọn ABC ( AB < AC) đường cao BE và CF cắt nhau tại H. các đường thẳng kẻ từ B song song với CF, kẻ từ C song song với BE cắt nhau tại D. Chứng minh:
a) ABE ~ACF
b) AE.BC= AB.EF
c) Gọi I là trung điểm của BC. Chứng minh I là trung điểm của DH
mọi người cíu tuiiii
<Tự vẽ hình nha>
a)Xét ΔABE và ΔACF
góc AEB=góc AFC
góc BEA=góc CFA
Vậy ΔABE ∼ ΔACF(g.g)
⇒\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC
⇒\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)
b)Xét ΔAEF và ΔABC
Góc A:chung
\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)
Vậy ΔAEF∼ΔABC (g.g)
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>FE/BC=AE/AB
=>FE*AB=AE*BC