Tính:
A= \(\frac{3^2}{5.14}\)+\(\frac{3^2}{7.18}\)+\(\frac{3^2}{9.22}\)+\(\frac{3^2}{11.26}\)+\(\frac{3^2}{13.30}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính: A = \(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)
\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{99.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)
\(=\frac{9}{5.14}+\frac{9}{7.18}+\frac{9}{9.22}+\frac{9}{11.26}+\frac{9}{13.30}\)
\(=\frac{9}{2}.\left(\frac{4}{10.14}+\frac{4}{14.18}+\frac{4}{18.22}+\frac{4}{22.26}+\frac{4}{26.30}\right)\)
\(=\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+...+\frac{1}{26}-\frac{1}{30}\right)\)
\(=\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{30}\right)\)
\(=\frac{9}{2}.\left(\frac{3}{30}-\frac{1}{30}\right)\)
\(=\frac{9}{2}.\frac{2}{30}\)
\(=\frac{9}{30}\)
\(=\frac{3}{10}\)
Chúc bạn học tốt !!!
\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)
\(=3^2.2.\left(\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\right)\)
\(=9.2.\frac{1}{4}.\left(\frac{14-10}{14.10}+\frac{18-14}{14.18}+\frac{22-18}{18.22}+\frac{26-22}{22.26}+\frac{30-26}{26.30}\right)\)
\(=\frac{9}{2}\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)
=\(\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{30}\right)=\frac{9}{2}.\frac{1}{15}=\frac{3}{10}\)
\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{13.30}\)
= \(2.\left(\frac{3^2.}{5.2.14}+\frac{3^2}{2.7.18}+\frac{3^2}{2.9.22}+\frac{3^2}{2.13.30}\right)\)
= \(2.\left(\frac{3^2}{10.14}+\frac{3^2}{14.18}+\frac{3^2}{18.22}+\frac{3^2}{26.30}\right)\)
= \(2.\frac{3^2}{4}\left(\frac{4}{10.14}+\frac{4}{14.18}+\frac{4}{18.22}+\frac{4}{26.30}\right)\)
= \(\frac{9}{2}\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{195}\right)\)
= \(\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{22}+\frac{1}{195}\right)\)
= \(\frac{9}{2}.\left(\frac{3}{55}+\frac{1}{195}\right)\)
=\(\frac{9}{2}.\frac{128}{2145}\)
= \(\frac{192}{715}\)
\(A=\dfrac{3^2}{5\cdot14}+\dfrac{3^2}{7\cdot18}+\dfrac{3^2}{9\cdot22}+\dfrac{3^2}{11\cdot26}+\dfrac{3^2}{13\cdot30}\\ =3^2\cdot\left(\dfrac{1}{5\cdot14}+\dfrac{1}{7\cdot18}+\dfrac{1}{9\cdot22}+\dfrac{1}{11\cdot26}+\dfrac{1}{13\cdot30}\right)\\ =9\cdot\dfrac{1}{2}\cdot\left(\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+\dfrac{1}{9\cdot11}+\dfrac{1}{11\cdot13}+\dfrac{1}{13\cdot15}\right)\\ =\dfrac{9}{2}\cdot\dfrac{1}{2}\cdot\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\right)\\ =\dfrac{9}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\right)\\ =\dfrac{9}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{15}\right)\\ =\dfrac{9}{4}\cdot\dfrac{2}{15}\\ =\dfrac{3}{10}\)
a)
\(\begin{array}{l}{\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\\ = {\left( {\frac{4}{4} + \frac{2}{4} - \frac{1}{4}} \right)^2}.\left( {\frac{{14}}{7} + \frac{3}{7}} \right)\\ = {\left( {\frac{5}{4}} \right)^2}.\frac{{17}}{7}\\ = \frac{{25}}{{16}}.\frac{{17}}{7}\\ = \frac{{425}}{{112}}\end{array}\)
b)
\(\begin{array}{l}4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\\ = 4:{\left( {\frac{3}{6} - \frac{2}{6}} \right)^3}\\ = 4:{\left( {\frac{1}{6}} \right)^3}\\ = 4:\frac{1}{{216}}\\ = 4.216\\ = 864\end{array}\)
a)
\(\begin{array}{l}1\frac{1}{2} + \frac{1}{5}.\left[ {\left( { - 2\frac{5}{6} + \frac{1}{3}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\left[ {\left( { - \frac{{17}}{6} + \frac{2}{6}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\frac{{ - 15}}{6}\\ = \frac{3}{2} + \frac{{ - 1}}{2}\\ = \frac{2}{2}\\=1\end{array}\)
b)
\(\begin{array}{l}\frac{1}{3}.\left( {\frac{2}{5} - \frac{1}{2}} \right):{\left( {\frac{1}{6} - \frac{1}{5}} \right)^2}\\ = \frac{1}{3}.\left( {\frac{4}{{10}} - \frac{5}{{10}}} \right):{\left( {\frac{5}{{30}} - \frac{6}{{30}}} \right)^2}\\ = \frac{1}{3}.\frac{{ - 1}}{{10}}:{\left( {\frac{{ - 1}}{{30}}} \right)^2}\\ = \frac{{ - 1}}{{30}}:\frac{1}{{{{30}^2}}}\\ = \frac{{ - 1}}{{30}}{.30^2}\\ = - 30\end{array}\)
A =\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)
A =\(3^2.\left(\frac{1}{5.14}+\frac{1}{7.18}+\frac{1}{9.22}+\frac{1}{11.26}+\frac{1}{13.30}\right)\)
A =\(9.\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
A =\(\frac{9}{4}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
A =\(\frac{9}{4}.\left(\frac{1}{5}-\frac{1}{15}\right)\)
A =\(\frac{9}{4}.\frac{2}{15}\)
A =\(\frac{3}{10}\)