Cho a, b, c, d là các số tự nhiên khác 0 và a/b < c/d. Chứng tỏ rằng a × d < b × c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Ta có \(a^2+b^2=c^2+d^2\)
<=> a2 +b2 +c2 +d2 = 2(c2 +d2)\(⋮2\)(1)
Mặt khác (a2 + b2 + c2 +d2) - (a+b+c+d)= a2 -a +b2 - b +c2 -c +d2-d= a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮2\)(2)
Từ (1) và (2) suy ra a+b+c+d \(⋮2\)
mà a, b, c, d là các số tự nhiên khác 0 nên a+b+c+d>2. Do đó a+b+c+d là hợp số
Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!
Do a/b < c/d và b>0 ; d>0 suy ra ad< bc ( 1)
Cộng thêm ad vào 2 vế của ( 1) ta được:
ad + ad < bc + ad
=> a( b+d) < b ( a+ c )
=> a/b < a+c/b+c ( 2)
Cộng thêm cd vào 2 vế của ( 2) ta được:
ad + cd < bc + cd
=> ( a+ c) b < ( b+ d ) c
=> a+c/b+d < c/d ( 3)
Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y
b) Ta có:
-1/5 < -1/6 => -1/5 < -2/11 < -1/6
-1/5 < -2/11 => -1/5 < - 3/16 < -2/11
-1/5 < -3/16 => -1/5 < -4/21 < -3/16
-1/5 < -4/21 => -1/5 < -4/21 < -3/16
Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6
Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3