\(a^2+b^2=c^2+d^2\)chứng tỏ rằng a+b+c+d là hợp số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

Ta có \(a^2+b^2=c^2+d^2\)   

<=> a+b+c2 +d= 2(c+d2)\(⋮2\)(1)

Mặt khác (a+ b+ c2 +d2) - (a+b+c+d)= a2 -a +b- b +c-c +d2-d= a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮2\)(2)

Từ (1) và (2) suy ra a+b+c+d \(⋮2\)

 mà a, b, c, d là các số tự nhiên khác 0 nên a+b+c+d>2. Do đó a+b+c+d là hợp số

Cảm ơn bạn nhèo <3

6 tháng 6 2018

thưa chị e chịu !!!

6 tháng 6 2018

má ơi e rảnh lắm hả e

4 tháng 9 2019

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

3 tháng 4 2016

2 > M >/ 4/3  => M không là số N

25 tháng 8 2016

Do a;b;c và d là các số tự nhiên >0 => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số tự nhiên

25 tháng 8 2016

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d

A > a+b+c+d/a+b+c+d

A > 1 (1)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d

A < 2.(a+b+c+d)/a+b+c+d

A < 2 (2)

Từ (1) và (2) => 1 < A < 2

=> A không phải số nguyên ( đpcm)

17 tháng 8 2016

Đặt \(A=\frac{a+1}{b}+\frac{b+1}{a}=\left(\frac{a+1}{b}+1\right)+\left(\frac{b+1}{a}+1\right)-2=\left(a+b+1\right)\left(\frac{1}{a}+\frac{1}{b}\right)-2\)

Vì A có giá trị là một số tự nhiên nên \(\frac{1}{a}+\frac{1}{b}\) phải có giá trị là số tự nhiên hay

\(\frac{a+b}{ab}\) là một số tự nhiên \(\Rightarrow\left(a+b\right)⋮ab\)

Vì d là ƯCLN(a,b) nên \(a=dm,b=dn\) \(\Rightarrow\begin{cases}a+b=d\left(m+n\right)\\ab=d^2mn\end{cases}\) (m,n thuộc N)

\(\Rightarrow\frac{a+b}{ab}=\frac{d\left(m+n\right)}{d^2mn}=\frac{m+n}{dmn}\)

=> (m+n) chia hết cho dmn \(\Rightarrow m+n\ge d\)

\(\Rightarrow d\left(m+n\right)\ge d^2\) hay \(a+b\ge d^2\)