Cho tam giác ABC cân tại A(góc A nhọn),tia phân giác của góc A cắt BC tại I a, chứng minh AI vioong góc bới BC b, gọi M là trung điểm của AB,G là giao điểm của CM với A.Chứng minh rằng BG là đường trung tuyến của tam giác ABC c, biết AB=AC=13cm,BC=15cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
b: Xét ΔABC có
AI,CM là trung tuyến
AI cắt CM tại G
=>G là trọng tâm
=>BG là đường trung tuyến của ΔABC
a: Xét ΔABI và ΔACI có
AB=AC
góc BAI=góc CAI
AI chung
=>ΔABI=ΔACI
b: ΔACB cân tại A
mà AI là phân giác
nên AI vuông góc BC
c: Xét ΔBAC có
AI,CM là các đườg trung tuyến
AI căt CM tại G
=>G là trọng tâm
=>BG là đường trung tuyến của ΔABC
a.vì \(\Delta ABC\)cân tại A mà AI là đường phân phân giác của\(\widehat{A}\)=>AI đồng thời là đường cao và đường trung tuyến ứng với cạnh BC của tam giác ABC
=>\(AI\perp BC\)
b.xét tam giác ABC có
AI,CM là hai đường trung tuyến của tam giác ABC(gt)(cmt)
mà AI cắt CM tại G=>G là trọng tâm của tam giác ABC
=>BG là đường trung tuyến của tam giác ABC
c.ta có IB=IC=BC/2=18/2=9(cm)(AI là đương trung tuyến ứng với cạnh BC của tam giác ABC=>I là trung điểm của tam bc)
xét tam giácACI vuông tại I có
AC^2=AI^2=IC^2(ĐL py-ta-go)
hay 15^2=9^2+AI^2
=>AI^2=225-81=144
=>AI=12(cm)
tam giác ABC có G là trọng tâm tam giác ABC ;AI là đường trung tuyến ứng với cạnh BC của tam giác ABC
=>IG=2/3AI=2/3.12=89(cm)
a) Xét 2 tam giác BAI và tam giác CAI, ta có:
AB = AC (giả thiết tam giác cân)
góc BAI = góc CAI (AI là tia phân giác góc A)
AI là cạnh chung
\(\Rightarrow\Delta\) BAI = \(\Delta\) CAI (c.g.c)
\(\Rightarrow\) góc BIA = góc CIA (hai góc tương ứng)
Mà 2 góc này ở vị trí kề bù nên ta có: góc BIA = góc CIA = 1/2.\(180^0\)=\(90^0\)
\(\Rightarrow\) AI vuông góc với BC
b) Ta có: BI = CI (2 cạnh tương ứng do tg BAI = tg CAI)
\(\Rightarrow\) AI là trung tuyến của tg ABC
Lại có: BD là trung tuyến của tg ABC
Mà AD giao với BC tại M nên M là trọng tâm của tg ABC
c) Ta có: BI = CI = 1/2.BC = 1/2.6 = 3(cm)
Áp dụng định lí Pitago vào tg vuông AIB có:
\(AB^2=BI^2+AI^2\)
\(\Rightarrow AI^2=AB^2-BI^2\)
\(\Rightarrow AI^2=5^2-3^2=25-9=16\)
\(\Rightarrow\) \(AI=4\) (cm)
\(\Rightarrow AM=\frac{2}{3}.AI=\frac{2}{3}.4=\frac{8}{3}\) (cm)
Vậy AM = 8/3 (cm)
Chúc bạn học tốt !!!
a: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
b: Xét ΔBAC có
AI là đường trung tuyến
BD là đường trung tuyến
AI cắt BD tại M
Do đó: M là trọng tâm của ΔABC
c: BC=6cm nen BI=3(cm)
=>AI=4(cm)
hay AM=8/3(cm)