Gieo 1 con xúc xắc cân đối đồng chất .
a) Hãy liệt kê tất cả các trường hợp xảy ra số chấm nhỏ hơn 4
b) Tính xác suất để gieo được mặt lẻ chấm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo biến cố A ta có các mặt có thể ra là 6 chấm nên xác suất ra là: P(A) = \(\frac{1}{6}\)
b) Theo biến cố B ta có các mặt thỏa mãn nhỏ hơn 7 là tất cả các mặt của xúc xắc nên B là biến cố chắc chắn. Do đó, P(B) = 1
a, Các kết quả có thể xảy ra khi gieo con xúc xắc là:
A1 = ''Xuất hiện mặt có 1 chấm''.
A2 = ''Xuất hiện mặt có 2 chấm''.
A3 = ''Xuất hiện mặt có 3 chấm''.
A4 = ''Xuất hiện mặt có 4 chấm''.
A5 = ''Xuất hiện mặt có 5 chấm''.
A6 = ''Xuất hiện mặt có 6 chấm''.
b, xác suất của biến cố A là:
Vì gieo xúc xắc ngẫu nhiên nên khả năng xảy ra của mỗi biến cố A1, A2,...,A6 là như nhau. Ta nói 6 biến cố này đồng khả năng. Từ đó, xác suất để gieo xúc xắc xuất hiện mặt 5 chấm là \(\dfrac{1}{6}\).
Xác suất của biến cố B bằng 1 vì biến cố này là biến cố chắc chắn. Xúc xắc có 6 mặt mà 6 mặt đều có số chấm nhỏ hơn 7.
a) Xác suất của biến cố B là \(\dfrac{1}{6}\), vì có 6 mặt trên xúc xắc và chỉ có duy nhất một mặt là mặt 6 chấm.
b)
+ Trong trường hợp biến cố A xảy ra, xác suất của biến cố B không thay đổi. Vì hai biến cố này là độc lập, kết quả của biến cố A không ảnh hưởng đến biến cố B.
+ Trong trường hợp biến cố A không xảy ra, tức là An không gieo được mặt 6 chấm, xác suất của biến cố B là \(\dfrac{1}{6}\)
$HaNa$
\(n_{\Omega}=6^3=216\)
a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"
\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"
Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}
=> \(n_{\overline{A}}=4.4.4=64\)
Vậy, XS của biến cố A là:
\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)
b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"
=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"
=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)
Vậy, XS của biến cố B là:
\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)
Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?
Số kết quả có thể xảy ra là 6 vì con xúc xắc có 6 mặt.
Số kết quả thuận lời của \(A\) là 2 (ứng với mặt 3 chấm và mặt 6 châm).
Xác suất của biến cố \(A\) là:
\(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).
Các kết quả có thể xảy ra khi gieo con xúc xắc là: 1,2,3,4,5,6.
a: A={1;2;3}
b: B={1;3;5}
=>P(B)=3/6=1/2