so sánh các phân số bằng 2 cách khác nhau
\(\dfrac{3}{4}\) và \(\dfrac{4}{3}\) \(\dfrac{11}{8}\) và \(\dfrac{7}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{-7}{6}=\dfrac{-7\cdot3}{6\cdot3}=\dfrac{-21}{18}\)
\(\dfrac{-11}{9}=\dfrac{-11\cdot2}{9\cdot2}=\dfrac{-22}{18}\)
mà -21>-22
nên \(-\dfrac{7}{6}>-\dfrac{11}{9}\)
b: \(\dfrac{5}{-7}=\dfrac{-5}{7}=\dfrac{-5\cdot5}{7\cdot5}=\dfrac{-25}{35}\)
\(\dfrac{-4}{5}=\dfrac{-4\cdot7}{5\cdot7}=\dfrac{-28}{35}\)
mà -25>-28
nên \(\dfrac{5}{-7}>\dfrac{-4}{5}\)
c: \(\dfrac{-8}{7}< -1\)
\(-1< -\dfrac{2}{5}\)
Do đó: \(-\dfrac{8}{7}< -\dfrac{2}{5}\)
d: \(-\dfrac{2}{5}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(-\dfrac{2}{5}< \dfrac{1}{3}\)
a
2/5> 2/7
5/9<5/6
11/2>11/3
cách so sánh :
sét mẫu số của phân số này bé hơn mẫu số của phân số kia thì phân số này lớn hơn
mẫu số của phân số này lớn hơn mẫu số của phân số kia thì phân số này bé hơn
a)
b)
+) Quy đồng mẫu số ba phân số $\frac{1}{4};\frac{3}{4};\frac{5}{8}$
$\frac{1}{4} = \frac{{1 \times 2}}{{4 \times 2}} = \frac{2}{8}$
$\frac{3}{4} = \frac{{3 \times 2}}{{4 \times 2}} = \frac{6}{8}$ ; Giữ nguyên phân số $\frac{5}{8}$
Vì $\frac{2}{8} < \frac{5}{8} < \frac{6}{8}$ nên $\frac{1}{4} < \frac{5}{8} < \frac{3}{4}$
Vậy các phân số xếp theo thứ tự từ bé đến lớn là: $\frac{1}{4};\,\,\frac{5}{8};\,\,\frac{3}{4}$
+) Quy đồng mẫu số ba phân số $\frac{2}{3};\,\,\frac{2}{9};\,\,\frac{5}{9}$
$\frac{2}{3} = \frac{{2 \times 3}}{{3 \times 3}} = \frac{6}{9}$ ; Giữ nguyên phân số $\frac{2}{9}$; $\frac{5}{9}$
Vì $\frac{2}{9} < \frac{5}{9} < \frac{6}{9}$ nên $\frac{2}{9} < \frac{5}{9} < \frac{2}{3}$
Vậy các phân số xếp theo thứ tự từ bé đến lớn là $\frac{2}{9};\,\,\frac{5}{9};\,\,\frac{2}{3}$
a) \(\dfrac{2}{5}=\dfrac{4}{10}\)
\(\dfrac{4}{10}>\dfrac{3}{10}\)
b) \(\dfrac{5}{6}=\dfrac{10}{12}\)
\(\dfrac{7}{12}< \dfrac{10}{12}\)
c) \(\dfrac{1}{2}=\dfrac{2}{4}\)
\(\dfrac{3}{4}< \dfrac{2}{4}\)
d) \(\dfrac{8}{3}=\dfrac{56}{21}\)
\(\dfrac{56}{21}>\dfrac{11}{21}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
a)\(\dfrac{-8}{9}< \dfrac{-7}{9}\\ \dfrac{6}{7}< \dfrac{11}{10}\)
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
a)
Ta có: \(BCNN\left( {10,15} \right) = 30\) nên
\(\begin{array}{l}\dfrac{7}{{10}} = \dfrac{{7.3}}{{10.3}} = \dfrac{{21}}{{30}}\\\dfrac{{11}}{{15}} = \dfrac{{11.2}}{{15.2}} = \dfrac{{22}}{{30}}\end{array}\)
Vì \(21 < 22\) nên \(\dfrac{{21}}{{30}} < \dfrac{{22}}{{30}}\) do đó \(\dfrac{7}{{10}} < \dfrac{{11}}{{15}}\).
b)
Ta có: \(BCNN\left( {8,24} \right) = 24\) nên
\(\dfrac{{ - 1}}{8} = \dfrac{{ - 1.3}}{{8.3}} = \dfrac{{ - 3}}{{24}}\)
Vì \( - 3 > - 5\) nên \(\dfrac{{ - 3}}{{24}} > \dfrac{{ - 5}}{{24}}\) do đó \(\dfrac{{ - 1}}{8} > \dfrac{{ - 5}}{{24}}\).
\(a,\dfrac{11}{49}< \dfrac{11}{46};\dfrac{11}{46}< \dfrac{13}{46}\\ Nên:\dfrac{11}{49}< \dfrac{13}{46}\\ b,\dfrac{62}{85}< \dfrac{62}{80};\dfrac{62}{80}< \dfrac{73}{80}\\ Nên:\dfrac{62}{85}< \dfrac{73}{80}\\ c,\dfrac{n}{n+3}< \dfrac{n}{n+2};\dfrac{n}{n+2}< \dfrac{n+1}{n+2}\\ Nên:\dfrac{n}{n+3}< \dfrac{n+1}{n+2}\)
Cách 1:
\(\dfrac{3}{4}=\dfrac{9}{12}\)
\(\dfrac{4}{3}=\dfrac{16}{12}\)
Do đó \(\dfrac{3}{4}< \dfrac{4}{3}\)
Cách 2:
\(\dfrac{3}{4}< 1\)
\(1< \dfrac{4}{3}\)
Do đó \(\dfrac{3}{4}< \dfrac{4}{3}\)
\(-------\)
Cách 1:
\(\dfrac{11}{8}=\dfrac{55}{40}\)
\(\dfrac{7}{10}=\dfrac{28}{40}\)
Do đó \(\dfrac{11}{8}>\dfrac{7}{10}\)
Cách 2:
\(\dfrac{11}{8}>1\)
\(1>\dfrac{7}{10}\)
Do đó \(\dfrac{11}{8}>\dfrac{7}{10}\)