Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(12< 13;49>47\)
\(\Rightarrow\dfrac{12}{49}< \dfrac{13}{47}\)
b)\(\dfrac{64}{85}>\dfrac{43}{85}\Rightarrow\dfrac{64}{85}>\dfrac{1}{2}\)
\(\dfrac{17}{35}< \dfrac{17}{34}\Rightarrow\dfrac{17}{35}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{17}{35}< \dfrac{64}{85}\)
c) \(\dfrac{19}{31}>\dfrac{16}{31}\Rightarrow\dfrac{19}{31}>\dfrac{1}{2}\)
\(\dfrac{17}{35}< \dfrac{17}{34}\Rightarrow\dfrac{17}{35}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{17}{35}< \dfrac{19}{31}\)
d)
\(1-\dfrac{67}{77}=\dfrac{10}{77}\)
\(1-\dfrac{73}{83}=\dfrac{10}{83}\)
\(\dfrac{10}{77}>\dfrac{10}{83}\Rightarrow\dfrac{67}{77}< \dfrac{73}{83}\)
e)\(1-\dfrac{456}{461}=\dfrac{5}{461}\)
\(1-\dfrac{123}{128}=\dfrac{5}{128}\)
\(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
\(a,\dfrac{12}{49}< \dfrac{12}{47}< \dfrac{13}{47}\Rightarrow\dfrac{12}{49}< \dfrac{12}{47}\)
b, Ta có: \(\dfrac{17}{35}=\dfrac{51}{105}\)
\(\dfrac{64}{85}>\dfrac{64}{105}>\dfrac{51}{105}\Rightarrow\dfrac{64}{85}>\dfrac{51}{105}\) hay \(\dfrac{64}{85}>\dfrac{17}{85}\)
c,\(\dfrac{19}{31}>\dfrac{17}{31}>\dfrac{17}{35}\Rightarrow\dfrac{19}{31}>\dfrac{17}{35}\)
d, \(\dfrac{67}{77}+\dfrac{10}{77}=1\)
\(\dfrac{73}{83}+\dfrac{10}{83}=1\)
\(\dfrac{10}{77}>\dfrac{10}{83}\Rightarrow\dfrac{67}{77}< \dfrac{73}{83}\)
e, \(\dfrac{456}{461}+\dfrac{5}{461}=1\)
\(\dfrac{123}{128}+\dfrac{5}{128}=1\)
\(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
e, D = 512+1 /513+ 1 < 1 => 512+1/ 513+1 < 512+1+4/ 513+1+4
= 512+5/ 513+5 = 5. (511+1) / 5. (512+1) = 511+1 / 512+1= E
Vậy D < E
Giải:
a)
\(\dfrac{7}{48}=\dfrac{105}{720};\)
\(\dfrac{11}{72}=\dfrac{110}{720};\)
\(\dfrac{17}{120}=\dfrac{102}{720}\)
Vì \(102< 105< 110\)
\(\Leftrightarrow\dfrac{102}{720}< \dfrac{105}{720}< \dfrac{110}{720}\)
\(\Leftrightarrow\dfrac{17}{120}< \dfrac{7}{48}< \dfrac{11}{72}\)
Vậy ...
b) \(\dfrac{31}{49}=\dfrac{60140}{95060};\)
\(\dfrac{62}{97}=\dfrac{60760}{95060};\)
\(\dfrac{93}{140}=\dfrac{63147}{95060}\)
Vì \(60140< 60760< 63147\)
\(\Leftrightarrow\dfrac{60140}{95060}< \dfrac{60760}{95060}< \dfrac{63147}{95060}\)
\(\Leftrightarrow\dfrac{31}{49}< \dfrac{62}{97}< \dfrac{93}{140}\)
Vậy ...
a ) \(\dfrac{7}{48}\) = \(\dfrac{105}{720}\)
\(\dfrac{11}{72}\) = \(\dfrac{110}{720}\)
\(\dfrac{17}{120}\) = \(\dfrac{102}{720}\)
Vì 102 < 105 < 110
\(\Leftrightarrow\) \(\dfrac{102}{720}\) < \(\dfrac{105}{720}\) < \(\dfrac{110}{720}\)
\(\Leftrightarrow\) \(\dfrac{17}{120}\) < \(\dfrac{7}{48}\) < \(\dfrac{11}{72}\)
Vậy .....................
( k cho tớ nha . Tớ chỉ bt lm phần a )
\(4)\)
\(\dfrac{-\left(-x\right)}{5}-\dfrac{2}{10}=\dfrac{1}{-5}-\dfrac{7}{50}\)
\(\Leftrightarrow\dfrac{x}{5}-\dfrac{2}{10}=\dfrac{1}{-5}-\dfrac{7}{50}\)
\(\dfrac{2x}{10}-\dfrac{2}{10}=\dfrac{-10}{50}-\dfrac{7}{50}\)
\(\Leftrightarrow\dfrac{2x-2}{10}=\dfrac{-10-7}{50}\)
\(\dfrac{2x-2}{10}=\dfrac{-17}{50}\)
\(\Leftrightarrow50\left(2x-2\right)=-17.10\)
\(100x-100=-170\)
\(100x=-170+100=-70\)
\(x=-70:100=\dfrac{-7}{10}\)
\(\dfrac{x+1}{5}=\dfrac{7}{x-1}\)
\(\left(x+1\right)\left(x-1\right)5.7\)
\(x\left(x-1\right)+1\left(x-1\right)=35\)
\(x^2-x+x-1=35\)
\(x^2-1=35\)
\(x^2=36\)
\(\Leftrightarrow x=\left\{\pm6\right\}\)
bạn có thể giải đc các bài còn lại k ? K phải mk ép bạn đâu nhưng nếu bạn lm đc thì giúp mk nha
Ừk
7.
\(G=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\\ =\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\\ =\dfrac{1}{3}-\dfrac{1}{13}\\ =\dfrac{13}{39}-\dfrac{3}{39}\\ =\dfrac{10}{39}\)
8.
\(H=\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{755}+\dfrac{1}{1147}\\ =\dfrac{1}{1\cdot7}+\dfrac{1}{7\cdot13}+\dfrac{1}{13\cdot19}+\dfrac{1}{19\cdot25}+\dfrac{1}{25\cdot31}+\dfrac{1}{31\cdot37}\\ =\dfrac{1}{6}\cdot\left(\dfrac{6}{1\cdot7}+\dfrac{6}{7\cdot13}+\dfrac{6}{13\cdot19}+\dfrac{6}{19\cdot25}+\dfrac{6}{25\cdot31}+\dfrac{6}{31\cdot37}\right)\\ =\dfrac{1}{6}\cdot\left(\dfrac{1}{1}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{37}\right)\\ =\dfrac{1}{6}\cdot\left(1-\dfrac{1}{37}\right)\\ =\dfrac{1}{6}\cdot\dfrac{36}{37}\\ =\dfrac{6}{37}\)
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
Vì 18/91 < 18/90 =1/5
23/114>23115=1/5
vậy 18/91<1/5<23/114
suy ra 18/91<23/114
vì 21/52=210/520
Mà 210/520=1-310/520
213/523=1-310/523
310/520>310/523
vậy 210/520<213/523
suy ra 21/52<213/523
\(a,\dfrac{11}{49}< \dfrac{11}{46};\dfrac{11}{46}< \dfrac{13}{46}\\ Nên:\dfrac{11}{49}< \dfrac{13}{46}\\ b,\dfrac{62}{85}< \dfrac{62}{80};\dfrac{62}{80}< \dfrac{73}{80}\\ Nên:\dfrac{62}{85}< \dfrac{73}{80}\\ c,\dfrac{n}{n+3}< \dfrac{n}{n+2};\dfrac{n}{n+2}< \dfrac{n+1}{n+2}\\ Nên:\dfrac{n}{n+3}< \dfrac{n+1}{n+2}\)