\(5x^2+2y^2+2xy-2x+4y+2015\)Tìm GTNN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)
\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)
\(( y^2 + 4y + 4 ) + 2010\)
\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)
\(\ge\)\(2010\)
\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)
\(\Rightarrow\)\(x = 1 và y = - 2\)
\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)
Đặt `A=2x^2+2y^2+2xy-4x+4y+2021`
`<=>2A=4x^2+4y^2+4xy-8x+8y+4042`
`<=>2A=4x^2+4xy+y^2-8x-4y+3y^2+12y+4042`
`<=>2A=(2x+y)^2-4(2x+y)+4+3y^2+12y+12+4026`
`<=>2A=(2x+y-2)^2+3(y+2)^2+4026>=4026`
`=>A>=2013`
Dấu "=" xảy ra khi `y=-2,x=(2-y)/2=2`
\(G=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y\)
\(=\left[x^2+2x\left(y-z\right)+\left(y-z\right)^2\right]+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-5\)
\(=\left(x+y-z\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-5\ge-5\)
\(minG=-5\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
\(B=2x^2+y^2+2xy+6x+2y+2015\)
\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)
\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)
\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)
Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)
Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Đặt \(A=5x^2+2y^2+2xy-2x+4y+2015\)
\(\Rightarrow\) \(5A=25x^2+10y^2+10xy-10x+20y+10075\)
\(\Leftrightarrow\) \(5A=25x^2+10\left(y-1\right)x+\left(10y^2+20y+10075\right)\)
\(=\left(5x\right)^2+2.5x\left(y-1\right)+\left(y-1\right)^2+\left(9y^2+22y+10074\right)\)
\(=\left(5x+y-1\right)^2+9\left(y^2+\frac{22}{9}y+\frac{121}{81}\right)+\frac{90545}{9}\)
\(=\left(5x+y-1\right)^2+9\left(y+\frac{11}{9}\right)^2+\frac{90545}{9}\ge\frac{90545}{9}\) suy ra \(A\ge\frac{90545}{9}:5=\frac{18109}{9}\)
Vậy \(A_{min}=\frac{18109}{9}\) \(\Leftrightarrow\) \(\hept{\begin{cases}5x+y-1=0\\y+\frac{11}{9}=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{4}{9}\\y=\frac{-11}{9}\end{cases}}\)
Done!