Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2+5y^2-2xy+4y+1=0\)
\(x^2+2xy+y^2+4y^2+4y+1=0\)
\(\left(x+y\right)^2+\left(2y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\2y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\y=-\frac{1}{2}\left(1\right)\end{cases}}\)
Từ (1) ta đc: x = 1/2
b)\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
a)\(M=x^2-2xy+2y^2-4y+2016\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)
Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)
Vậy MinM=2012 khi x=y=2
b)\(N=x^2-2xy+2x+2y^2-4y+2016\)
\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)
Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)
Vậy MinN=2014 khi x=0;y=1
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
=> x2-2x+1+y2+2y+1+4x2+8xy+4y2=0
=>(x-1)2+(y+1)2+(2x+2y)2=0
=>x-1=0 va y+1=0 va 2x+2y=0
=>x=1 va y=-1
5x^2 + 5y^2 +8xy -2x +2y +2 =0
4x^2 +8xy +4y^2 + x^2 -2x + 1 +y^2 +2y+1=0
(2x+2y)^2 +(x-1)^2 +(y+1)^2 =0
Vì ..... đều >=0 ( bạn tự viết tiếp )
Nên x=-y và x=1 và y= -1 (@_@)
Vậy (x;y)= (1;-1)
mk k viết đề nha :
<=>4x2+8xy+4y2+x2-2x+1+y2+2y+1=0
<=>4(x+y)2+(x-1)2+(y+1)2=0 (1)
mà 4(x+y)2>=0,(x-1)2>=0,(y+1)2>=0
=> để (1) có nghiệm thì đòng thời x+y=0,x-1=0,y+1=0
=>x=1,y=-1
vậy x=1,y=-1
A \(=\) x\(^2\) +2y\(^2\) - 2xy- 4y + 5
\(=\) ( x\(^2\) + y\(^2\) - 2xy ) + ( y\(^2\) - 4y + 4 ) + 1
\(=\) ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1
Vì ( x + y )\(^2\) và ( y - 2 )\(^2\) > 0 ∀ x và y
Nên ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1 > 1 ∀ x và y
Vậy A có giá trị nhỏ nhất là 1 khi
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\text{x + y =0}\\y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
B = 5x\(^2\) + 8xy + 5y\(^2\) - 2x = 2y ???
Đề bài câu B sai
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
có lời giải chi tiết ko ạ