Cho tam giác ABC vuông tại A, có AB=3a, BC=5a. Trên cạnh BC lấy điểm M sao cho CM=2a. Đường thẳng vuông góc với BC tại M cắt các đường thẳng AC , AB lần lượt tại D và E
a, Chứng minh tam giác CDM đồng dạng tam giác CBA
b, tính độ dài đoạn thẳng DM và CD theo a
a: Xet ΔCDM vuông tại M và ΔCBA vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCBA
b: BM=5a-2a=3a
\(AC=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)
ΔCDM đồng dạngvơi ΔCBA
=>CD/CB=DM/BA=CM/CA
=>CD/5a=DM/3a=2a/4a=1/2
=>CD=2,5a; DM=1,5a