Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
=>BA=6cm
a) tam giác BAC vuông tại A và tam giác BMN vuong tại M có: góc BAC=góc BMN
=> tam giác BAC đồng dạng tam giác BMN (g-g)
=> BA/BM=BC/BN=> BN=BM.BC/BA=18.20/12=30cm
b) tam giác PAN vuong tại A và tam giác PMC vuong tại M có
góc APN=góc MPC (đối đỉnh)
=> tam giác PAN đồng dạng tam giác PMC (g-g)
=> PA/PM=PN/PC
=> PA.PC=PM.PN (đpcm)
c) xét tam giác BNC có MN và AC là hai đường cao cắt nhau tại P
=> BP là đường cao thứ 3 kẻ từ B
=> BP vuong góc NC (đpcm)
a, Xét △ABC vuông tại A và △MDC vuông tại M
Có: ∠ACB là góc chung
=> △ABC ᔕ △MDC (g.g)
b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)
=> 362 + 482 = BC2 => BC2 = 3600 => BC = 60 (cm)
Vì M là trung điểm BC (gt) => MB = MC = BC : 2 = 60 : 2 = 30 (cm)
Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)
và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)
c, Xét △BME vuông tại M và △BAC vuông tại A
Có: ∠MBE là góc chung
=> △BME ᔕ △BAC (g.g)
\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)
Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)
=> ME là đường trung trực BC
=> EC = BE
Mà BE = 50 (cm)
=> EC = 50 (cm)
e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)
P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi
Bài làm
@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à.
a) Xét tam giác ABC và tam giác MDC có:
\(\widehat{BAC}=\widehat{DMC}=90^0\)
\(\widehat{BCA}\)chung
=> Tam giác ABC ~ tam giác MDC ( g - g )
b) Xét tam giác ABC vuông tại A có:
Theo pytago có:
BC2 = AB2 + AC2
hay BC2 = 362 + 482
hay BC2 = 1296 + 2304
=> BC2 = 3600
=> BC = 60 ( cm )
Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )
Vì tam giác ABC ~ tam giác MDC ( cmt )
=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)
hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)
=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)
=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)
c) Xét tam giác MBE và tam giác ABC có:
\(\widehat{BME}=\widehat{BAC}=90^0\)
\(\widehat{ABC}\)chung
=> Tam giác MBE ~ tam giác ABC ( g - g )
=> \(\frac{ME}{AC}=\frac{BM}{AB}\)
hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)
Xét tam giác MEC vuông tại M có:
EC2 = MC2 + ME2
hay EC2 = 302 + 402
=> EC2 = 900 + 1600
=> EC2 = 50 ( cm )
a) Vì tam giác MDC ~ Tam giác ABC
=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)
Câu c, d và câu đ giống nhau ?
a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung
=>tg ABC đ.dạng vs tg MDC(g.g)
b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung
=>tg ABC đ.dạng vs tg MBI(g.g) =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)
a) Xét \(\Delta ABC\)và \(\Delta MDC\)
Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)
b) Xét \(\Delta BIM\)và \(\Delta BCA\)
Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)
\(\widehat{B}\) là góc chung
\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)
\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow BI\text{.}BA=BM.BC\)
a: Xet ΔCDM vuông tại M và ΔCBA vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCBA
b: BM=5a-2a=3a
\(AC=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)
ΔCDM đồng dạngvơi ΔCBA
=>CD/CB=DM/BA=CM/CA
=>CD/5a=DM/3a=2a/4a=1/2
=>CD=2,5a; DM=1,5a