Trong một phòng học có n người, chứng minh rằng bao giờ cũng tìm được 2 người có số người quen trong số những người họp là như nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Lê Hoàng - Toán lớp 5 - Học toán với OnlineMath
Do trong phòng có 100 người, mỗi người quen it nhất 67 người còn lại nên số người mà người đó không quen nhiều nhất là:
100-67-1= 32( người)
Ta giả sử 1 người bất kỳ trong 100 người đó là A. Nếu ta loại những người mà A không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68 người( trong đó có A).
Ta lại giả sử 1 trong 68 người còn lại trong phòng( khác A) là B. Nếu ta loại đi những người mà B không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68-32=36( người) trong đó có A và B.
............................. 36......................................(khác A,B) là C.............................................C................................................
.....................................36-32=4( người) trong đó có A,B và C.
Trong 4 người còn lại ta giả sử người khác A,B,C là D thì khi đó trong phòng có 4 người: A,B,C và D suy ra A,B,C,D đôi một quen nhau. Do đó tìm được 4 người mà 2 người bất kì trong số đó đều quen nhau( đpcm)
Số người quen của mỗi người trong phòng họp nhận các giá trị từ 0 đến n–1. Rõ ràng trong phòng không thể đồng thời có người có số người quen là 0 (tức là không quen ai) và có người có số người quen là 10–1 (tức là quen tất cả). Vì vậy theo số lượng người quen, ta chỉ có thể phân n người ra thành 10–1 nhóm.
Vậy theo nguyên lí Dirichlet tồn tai một nhóm có ít nhất 2 người, tức là luôn tìm được ít nhất 2 người có số người quen là như nhau. (đpcm)
Xét A là 1 người bất kỳ trong phòng
\(\Rightarrow\)A quen ít nhất người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là
Trong phòng còn lại người. \(\Rightarrow\)gọi là 1 người quen \(\Rightarrow\) có nhiều nhất người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là \(\Rightarrow\)gọi là 1 người quen và \(\Rightarrow\) không quen nhiều nhất người trong phòng
\(\Rightarrow\)trong phòng còn lại 4 người \(\Rightarrow\)ngoài A,B,C còn 1 người giả sử là D,khi đó A,B,C,D đôi 1 quen nhau(đpcm)
Gọi a là số người dự họp
1+2+…+(a-1) = 105
=> 105 = (1+a-1) x (a-1) :2
a x (a-1) = 210
a và a-1 là 2 số tự nhiên liên tiếp mà 210 = 14 x 15
Vậy a=15
Học cùng lớp thì phải quen nhau hết nên n người đều quen với n-1 người
mình nghĩ làm như thế này:
ta chia n người đó vào n phòng tương ứng từ 0 đến n-1 phòng.
mà n chia n-1=1(dư 1 ) { cho phép chia này tớ nghĩ thế }.vay theo nguyên lí dirichle trong phòng có n người luôn tìm được 2 người có số người quen bằng nhau