Cho tg ABC vg ở A, đg cao AH. Kẻ BD là tia pg của ^ABC cắt AH tại I. Chứng minh AD^2 = IH.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))
Ta có: BD+CD=BC(D nằm giữa B và C)
nên CD=BC-BD=10-7=3(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất đường phân giác)
hay \(\dfrac{AB}{AC}=\dfrac{7}{3}\)
\(\Leftrightarrow AB=\dfrac{7}{3}AC\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC=\dfrac{15\sqrt{58}}{29}\)
\(\Leftrightarrow AB=\dfrac{7}{3}\cdot\dfrac{15\sqrt{58}}{29}=\dfrac{35\sqrt{58}}{29}\)
Xét ΔABC vuông tại A có
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{\left(\dfrac{35\sqrt{58}}{29}\right)^2}+\dfrac{1}{\left(\dfrac{15\sqrt{58}}{29}\right)^2}=\dfrac{841}{11025}\)
\(\Leftrightarrow AH=\dfrac{105}{29}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=\dfrac{60025}{641}\)
hay \(BH=\dfrac{245}{29}\left(cm\right)\)
Ta có: BD+DH=BH(D nằm giữa B và H)
nên \(DH=BH-BD\)
\(\Leftrightarrow DH=\dfrac{245}{29}-7=\dfrac{42}{29}\left(cm\right)\)
Vậy: \(AH=\dfrac{105}{29}\left(cm\right)\);\(BH=\dfrac{245}{29}\left(cm\right)\); \(DH=\dfrac{42}{29}\left(cm\right)\)
a: Xet ΔAHD vuông tại H và ΔAKD vuông tại K co
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: góc BAD+góc CAD=90 độ
góc BDA+góc DAH=90 độ
góc CAD=góc DAH
=>góc BAD=góc BDA
=>ΔBAD cân tại B
cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại nói tính AD
Bài 1 : cho tg ABC vuông ở A đường cao AH , biết AH = 16 CH = 25 . Tính AB,AC, BC, BH
Bài làm :
B A C H
Áp dụng định lý 2 của hệ thức lượng giác trong tam giác ta có :
\(AH^2=BH.CH=>BH=\dfrac{AH^2}{CH}=\dfrac{16^2}{25}=10,24\left(\text{đ}v\text{dd}\right)\)
=> BC = BH + CH = 25 + 10,24 = 35,24 (dvdd)
Áp dụng định lý 1 của hệ thức lượng giác trong tam giác ta có :
\(AB^2=BH.BC=>AB=\sqrt{\left(10,24.35,24\right)}=\sqrt{360,8576}\left(dv\text{dd}\right)\)
Áp dụng Định lý py- ta - go ta có :
\(BC^2=AB^2+AC^2=>AC=\sqrt{\left(30,24^2-\left(\sqrt{360,8576}\right)^2\right)}=\sqrt{553,6}\left(dv\text{dd}\right)\)
góc ADI=90 độ-góc ABD
góc AID=góc BIH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADI=góc AID
=>AI=AD
Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA
Xet ΔBAC vuông tại A có AH vuông góc BC
nên BA^2=BH*BC
=>BH/BA=BA/BC=IH/IA
=>IH=BA/BC*IA=BA/BC*AD
=>IH/AD=BA/BC
=>IH/AD=AD/DC
=>AD^2=IH*DC