Giải phương trình sau: \(\sqrt{2023-\sqrt{x}}=2023-x\)
giúp mik vs ạ, mik cảm ơn :>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(-1\le x\le7\)
Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)
\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)
=> \(VP\le4\)(2)
Từ (1);(2)
=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)
Vậy x=3
Điều kiện xác định
\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)
=> Tập xác định là tập rỗng
Vậy pt vô nghiệm
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
ĐK \(x\ge-4\)
\(BPT\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x\ge-4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-4\end{cases}}\)
\(\Rightarrow x\ge\frac{3}{2}\)
ĐK: \(x+4\ge0\) <=> \(x\ge-4\)
Bpt <=> \(\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\) hoặc \(2x-3>0\) <=> \(\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)hoặc \(x>\frac{3}{2}\)
<=> \(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)Thỏa mãn đk.
Vậy
\(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)
a) A=x^2+4x+4=(x+2)^2.
Giờ ta tính giá trị của đa thức A với x=98:
A=(98+2)^2=100^2=10000
b) B=x^3+9x^2+27x+27=(x+3)^3.
Thế x=-103 => (-103+3)^3=-1000000
c) Tách C = a⋅b−a⋅c+2⋅c−2⋅b rồi kết hợp lại thành C=(a−2)⋅b+(2−a)⋅c.
Thế a,b,c vào được vậy
C=(2−2)⋅1.007+(2−2)⋅(−0.006) =0
d) Bài này khó quá mà tui nghĩ là đưa mấy cặp (2023^2-2022^2) thành dạng a^2-b^2=(a-b)(a+b) á
d: D=(2023^2-2022^2)+(2021^2-2020^2)+...+(3^2-2^2)+(1^2-0^2)
=2023+2022+...+3+2+1+0
=2023*2024/2=2047276
1) \(\sqrt{x^2-x}=x\)
\(\Leftrightarrow x^2+x=x^2\)
\(\Leftrightarrow x^2+x-x^2=0\)
\(\Leftrightarrow x=0\)
Vậy: \(x=0\)
2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\))
\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)
\(\Leftrightarrow1-x^2=x^2-2x+1\)
\(\Leftrightarrow-x^2-x^2-2x=1-1\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow-2x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;-1\right\}\)
1: =>x^2+x=x^2 và x>=0
=>x=0
2: =>1-x^2=x^2-2x+1 và x>=1
=>x^2-2x+1-1+x^2>=0 và x>=1
=>2x^2-2x=0 và x>=1
=>x=1
a: \(\dfrac{1}{7}\cdot\dfrac{3}{8}+\dfrac{1}{7}\cdot\dfrac{5}{8}+\dfrac{\left(-1\right)^{2023}}{7}\)
\(=\dfrac{1}{7}\left(\dfrac{3}{8}+\dfrac{5}{8}\right)-\dfrac{1}{7}\)
\(=\dfrac{1}{7}-\dfrac{1}{7}=0\)
b: \(-3-\dfrac{16}{23}-\sqrt{\dfrac{4}{49}}-\dfrac{7}{23}+\dfrac{\left(-3\right)^2}{7}\)
\(=-3-\left(\dfrac{16}{23}+\dfrac{7}{23}\right)-\dfrac{2}{7}+\dfrac{9}{7}\)
\(=-3-\dfrac{23}{23}+\dfrac{7}{7}\)
=-3-1+1
=-3
c: \(\dfrac{4^2\cdot0,2^3}{2^6}\)
\(=\dfrac{2^4\cdot0,008}{2^6}=\dfrac{0.008}{4}=0.002\)
\(\sqrt{2023-\sqrt{x}}=2023-x\left(ĐK:x\ge0\right)\)
Đặt \(t=\sqrt{x}\left(t\le2023\right)\)
Pt trở thành : \(\sqrt{2023-t}=2023-t^2\)
\(\Leftrightarrow2023-t=\left(2023-t^2\right)^2\)
\(\Leftrightarrow t^4-4046t+4092529=2023-t\)
\(\Leftrightarrow t^4-4045+4090506=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2023\left(n\right)\\t=2022\left(n\right)\end{matrix}\right.\)
+) Với \(t=2023\Rightarrow x^2=2023\Rightarrow x=\pm17\sqrt{7}\)
+) Với \(t=2022\Rightarrow x^2=2022\Leftrightarrow x=\pm\sqrt{2022}\)
Vì \(x\ge0\) \(\Rightarrow x\in\left\{17\sqrt{7};\sqrt{2022}\right\}\)
Vậy \(S=\left\{17\sqrt{7};\sqrt{2022}\right\}\)
tks