K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

i: EM vuông góc AB

EN vuông góc CD

AB//CD

=>EM//EN

=>M,E,N thẳng hàng

18 tháng 12 2022

a Xét tứ giác DEBF có

BE//DF

BE=FD

Do đó; DEBF là hình bình hành

=>DB cắt EF tại trung điểm của mỗi đường(1)

b: Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mõi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

=>E,O,F thẳng hàng

28 tháng 12 2019

A B C D K F E O M N H I

+ Kẻ AH // FE // CI   \(\left(H,I\in BD\right)\)

\(\Delta AOH=\Delta COI\left(g.c.g\right)\)

\(\Rightarrow OH=OI\)

\(\Rightarrow BH+BI=BH+BO+OI\)

\(=BH+OH+BO=2BO=4BM\)

+ Xét \(\Delta ABH\)có : AH // FM theo định lí Ta - lét ta có : 

\(\frac{BA}{BF}=\frac{BH}{BM}\left(1\right)\)

+ Xét \(\Delta BCI\) có CI // ME theo định lí Ta - lét ta có : 

\(\frac{BC}{BE}=\frac{BI}{BM}\left(2\right)\)

+ Từ (1) và (2) \(\Rightarrow\)

\(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BH}{BM}+\frac{BI}{BM}=\frac{BH+BI}{BM}=\frac{4BM}{BM}=4\)

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.

a: Xét tứ giác AECK có

AK//CE

AK=CE

=>AECK là hình bình hành

b: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AECK là hbh

=>AC cắt EK tại trung điểm của mỗi đường

=>E,O,K thẳng hàng

c: Xét ΔDMC có

E là trung điểm của DC

EN//MC

=>N là trung điểm của DM

=>DN=NM

Xét ΔABN có

K là trung điểm của BA

KM//AN

=>M là trung điểm của BN

=>MB=MN=DN

17 tháng 3 2022

a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)

\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)

DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.

b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)

c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)

△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)

\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)

a:Gọi O là giao của AC và BD

=>O là trung điểm chung của AC và BD

Xét ΔOEB vuông tạiE và ΔOFD vuông tại F có

OB=OD

góc BOE=góc DOF

=>ΔOEB=ΔOFD

=>BE=DF

mà BE//DF

nên BEDF là hình bình hành

b: Xét ΔCHB vuông tại H và ΔCKD vuông tại K có

góc CBH=góc CDK

=>ΔCHB đồng dạng với ΔCKD

=>CH/CK=CB/CD

=>CH*CD=CK*CB

 

30 tháng 6 2019

Vì EB= \(\frac{AB}{2}\)

DF= \(\frac{DC}{2}\)

Mà AB=CD (hình bình hành)

=> EB= DF

Tứi giác EBFD có

EB // DF; EB=DF nên là hbh

Do đó: ED// BF

Xét \(\Delta CDM\) có: DF=CF ; FN// DM nên NC= NM (1)

Xét \(\Delta ABN\)   có: AE=BE ; EM// BN nên MN= AM(2)

Từ (1) và (2) suy ra AM=MN=NC

Chúc bạn học tốt