K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

a) VÌ DE//BC 

SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE

b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)

\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0
17 tháng 2 2020

A B C D E K G a

Lần lượt áp dụng định lý Talet trong các \(\Delta BCD,\Delta ABC,\Delta BEC\) ta có :

+) \(\Delta BCD:\hept{\begin{cases}KA//BC\\K\in DC,A\in BD\end{cases}}\)  \(\Rightarrow\frac{AK}{BC}=\frac{AD}{BD}\) (1)

+) \(\Delta ABC:\hept{\begin{cases}DE//BC\\D\in AB,E\in AC\end{cases}}\)  \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\) (2)

+) \(\Delta BEC:\hept{\begin{cases}AG//BC\\A\in EC,G\in BE\end{cases}}\) \(\Rightarrow\frac{AG}{BC}=\frac{AE}{EC}\) (3)

Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}\) \(\Rightarrow AK=AG\) mà\(A\in KG\left(A\in a\right)\)

\(\Rightarrow A\) là trung điểm của \(KG\) (đpcm)

17 tháng 2 2020

A B C D E K G

Ta có: 

+) AG // BC => \(\frac{AG}{BC}=\frac{AE}{AC}\)

+) AK//BC => \(\frac{AK}{BC}=\frac{AD}{BD}\)

+) DE//AC => \(\frac{AD}{DB}=\frac{AE}{EC}\)

Từ 3 điều trên => \(\frac{AG}{BC}=\frac{AK}{BC}\)=> AG = AK 

Mặt khác A, K, G thẳng hàng

=> A là trung điểm KG

22 tháng 10 2021

a: Xét ΔABC có

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: \(DE=\dfrac{BC}{2}=3\left(cm\right)\)

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

31 tháng 3 2016

bạn nhầm đề bài rồi!

xy vuông góc với OA thì đường thẳng qua B vuông góc với OC(hay xy) thì không thể cắt được

2 tháng 10 2018

A B C M K I E D H

MK nêu cách giải thôi nha! Lười quá!!!

a, CM tứ giác MEAD là hình bình hành.( bạn tự cm)

Vì tứ giác MEAD là hình bình hành nên 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường.

Mà điểm \(I\) là trung điểm của AM Suy ra \(I\) cũng là TĐ của DE

\(\Rightarrow I\in DE\) Suy ra \(I,D,E\) thẳng hàng

b, Kẻ \(IK\bot BC\) và \(AH\bot BC\) \((K,H \in BC)\)

Ta có

Vì  \(IA=IM\) và \(IK//AH\)

\(\Rightarrow MK=KH\) \(\Rightarrow \) \(IK\) là đường trung bình của \(\Delta AMH\)

\(\Rightarrow IK=\dfrac{AH}{2}\) (1)

Lại có: Áp dụng định lí Py-ta-go cho \(\Delta AHC\)

\(\Rightarrow AH^2=AC^2-HC^2\)

             \(=AC^2-{\left(\dfrac{BC}{2}\right)}^2\) \(=AC^2-{\left(\dfrac{AC}{2}\right)}^2\) ( Do \(\Delta ABC\) đều)

             \(=AC^2-\dfrac{AC^2}{4}=\dfrac{3AC^2}{4}\)

\(\Rightarrow AH=\dfrac{\sqrt3 AC}{4}\) (2) 

Từ (1)(2) suy ra \(IK=\dfrac{\sqrt3}{8}AC\)

Vì AC không đổi nên \(IK\) ko đổi.

Khoảng cách từ \(I\) đến BC ko đổi suy ra khi M di chuyển trên BC thì \(I\) di chuyển trên đường thẳng song song với BC

và cách BC một khoảng =\(\dfrac{\sqrt3}{8}AC=\dfrac{\sqrt3}{8}BC\)

21 tháng 11 2017

a) xét tam giác BAD ta có:

M là trung điểm AB (gt)

F là trung điểm BD (gt)

vậy MF là đường trung bình tam giác BAD

=>MF//AD và MF=1/2 AD (1)

xét tam giác ADC ta có:

P là trung điểm CD (gt)

E là trung điểm AC (gt)

vậy PE là đường trung bình tam giác ADC

=>PE//AD và PE=1/2 AD (2)

từ (1) và (2) => PE//MF và PE=MF=1/2 AD

tương tự như vậy với ME và PF ta có được ME//PF và ME=PF=1/2 BC

ta có:

ME=PF=1/2 BC (cmt)

MF=PE=1/2 AD (cmt)

AD=BC (gt)

vậy ME=PF=MF=PE 

=>MEPF là hình thoi

b) vẽ tứ giác MQPN. gọi giao điểm QN và MP là K

xét tam giác ABD ta có:

Q là trung điểm AD (gt)

M là trung điểm AB (gt)

vậy MQ là đường trung bình tam giác ABD

=> MQ//BD và MQ=1/2 BD (1)

xét tam giác CBD ta có:

P là trung điểm CD (gt)

N là trung điểm BC (gt)

vậy PN là đường trung bình tam giác CBD

=> PN//BD và PN=1/2 BD (2)

từ (1) và (2)=> PN//MQ và PN=MQ

=>MQPN là hình bình hành

mà QN và MP là hai đường chéo và K là giao điểm

=>K là trung điểm của QN và MP (3)

xét hình thoi MEPF ta có:

MP và EF là hai đường chéo

K là trung điểm MP (cmt)

=> K là trung điểm EF (4)

từ (3) và (4)=> QN,MP,EF đồng quy tại K.

21 tháng 11 2017

bài này khá đơn giản nên bạn tự vẽ hình nha !