K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

à, mink quen, = 2 chứ, mink vội nên bấm nhầm bạn ạ

20 tháng 4 2017

2x=4

 x=2

a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)

\(\Leftrightarrow x=25\)

b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)

\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)

\(\Leftrightarrow-9x=1\)

hay \(x=-\dfrac{1}{9}\)

31 tháng 8 2021

a: ta có: (2x5)(x+2)2x(x1)=15(2x−5)(x+2)−2x(x−1)=15

2x2+4x5x102x2+2x=15⇔2x2+4x−5x−10−2x2+2x=15

x=25⇔x=25

b: Ta có: (52x)(2x+7)=4x225(5−2x)(2x+7)=4x2−25

4x225+(2x5)(2x+7)=0⇔4x2−25+(2x−5)(2x+7)=0

(2x5)(2x+5+2x+

`@` `\text {Ans}`

`\downarrow`

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)

`=> (x-3)5 = (2x+1)3`

`=> 5x-15 = 6x+3`

`=> 5x-6x = 15+3`

`=> -x=18`

`=> x=-18`

\(\dfrac{x+1}{22}=\dfrac{6}{x}\)

`=> (x+1)x = 22*6`

`=> (x+1)x = 132`

`=> x^2 + x = 132`

`=> x^2+x-132=0`

`=> (x-11)(x+12)=0`

`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)

\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)

`=> (2x-1)x = 2*5`

`=> 2x^2 - x =10`

`=> 2x^2 - x - 10 =0`

`=> 2x^2 + 4x - 5x - 10 =0`

`=> (2x^2 + 4x) - (5x+10)=0`

`=> 2x(x+2) - 5(x+2)=0`

`=> (2x-5)(x+2)=0`

`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)

`=> (2x-1)(2x+1)=21*3`

`=> 4x^2 + 2x - 2x - 1 = 63`

`=> 4x^2 - 1=63`

`=> 4x^2 - 1 - 63=0`

`=> 4x^2 - 64 = 0`

`=> 4(x^2 - 16)=0`

`=> 4(x^2 + 4x - 4x - 16)=0`

`=> 4[(x^2+4x)-(4x+16)]=0`

`=> 4[x(x+4)-4(x+4)]=0`

`=> 4(x-4)(x+4)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)

`=> (2x+1)(x+1) = 9*5`

`=> (2x+1)(x+1)=45`

`=> 2x^2 + 2x + x + 1 = 45`

`=> 2x^2 + 3x + 1 =45`

`=> 2x^2 + 3x + 1 - 45 =0`

`=> 2x^2+3x-44=0`

`=> 2x^2 + 11x - 8x - 44=0`

`=> (2x^2 +11x) - (8x+44)=0`

`=> x(2x+11) - 4(2x+11)=0`

`=> (x-4)(2x+11)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)

15 tháng 6 2023

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)

\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)

 

 

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}

a) Ta có: \(\dfrac{1}{4}-\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{8}\\x+\dfrac{1}{2}=-\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{8}\\x=\dfrac{-5}{8}\end{matrix}\right.\)

 

31 tháng 8 2021

a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 40x = 15 <=> x = 3/8

31 tháng 8 2021

Sorry, cái này mình nhầm

 

12 tháng 12 2023

a: \(2x\left(x-1\right)-x\left(2x-5\right)=9\)

=>\(2x^2-2x-2x^2+5x=9\)

=>3x=9

=>\(x=\dfrac{9}{3}=3\)

b: \(\left(3x-2\right)^2-5\left(x-1\right)\left(x+2\right)=\left(2x-3\right)^2\)

=>\(9x^2-12x+4-5\left(x^2+x-2\right)=4x^2-12x+9\)

=>\(9x^2-12x+4-5x^2-5x+10=4x^2-12x+9\)

=>\(4x^2-17x+14=4x^2-12x+9\)

=>\(-17x+14=-12x+9\)

=>\(-5x=-5\)

=>x=1

19 tháng 6 2023

√(x² + x + 1) = 1

⇔ x² + x + 1 = 1

⇔ x² + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

*) x + 1 = 0

⇔ x = -1

Vậy x = 0; x = -1

--------------------

√(x² + 1) = -3

Do x² ≥ 0 với mọi x

⇒ x² + 1 > 0 với mọi x

⇒ x² + 1 = -3 là vô lý

Vậy không tìm được x thỏa mãn yêu cầu

--------------------

√(x² - 10x + 25) = 7 - 2x

⇔ √(x - 5)² = 7 - 2x

⇔ |x - 5| = 7 - 2x  (1)

*) Với x ≥ 5, ta có 

(1) ⇔ x - 5 = 7 - 2x

⇔ x + 2x = 7 + 5

⇔ 3x = 12

⇔ x = 4 (loại)

*) Với x < 5, ta có:

(1) ⇔ 5 - x = 7 - 2x

⇔ -x + 2x = 7 - 5

⇔ x = 2 (nhận)

Vậy x = 2

--------------------

√(2x + 5) = 5

⇔ 2x + 5 = 25

⇔ 2x = 20

⇔ x = 20 : 2

⇔ x = 10

Vậy x = 10

-------------------

√(x² - 4x + 4) - 2x +5 = 0

⇔ √(x - 2)² - 2x + 5 = 0

⇔ |x - 2| - 2x + 5 = 0 (2)

*) Với x ≥ 2, ta có: 

(2) ⇔  x - 2 - 2x + 5 = 0

⇔ -x + 3 = 0

⇔ x = 3 (nhận)

*) Với x < 2, ta có:

(2) ⇔ 2 - x - 2x + 5 = 0

⇔ -3x + 7 = 0

⇔ 3x = 7

⇔ x = 7/3 (loại)

Vậy x = 3

18 tháng 6 2023

1)

\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)

3) 

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)

Nếu \(x\ge5\) thì

\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)

=> Loại trường hợp này

Nếu \(x< 5\) thì

\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)

=> Nhận trường hợp này

Vậy x = 2 

4)

\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)

5)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)

Nếu \(x\ge2\) thì

\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)

=> Nhận trường hợp này

Nếu \(x< 2\) thì

\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)

=> Loại trường hợp này

Vậy x = 3