Bài 7. Cho góc xOy nhọn. Lấy điểm A trên tia Ox, điểm B trên tia Oy. Trên tia Ox lấy điểm C sao cho BC là tia phân giác của góc ABy. Gọi I là giao điểm của hai tia phân giác góc xAB và xOy. Chứng minh ba điểm B, I, C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc AIB = 180 độ - 1/2 BAC - ABI
Góc AIC = 180 độ - 1/2 BAC - ACI
⇒ AIB + AIC = 180 độ - BAC - (ABI + ACI)
Giả sử B, I, C thẳng hàng
⇒BIC = 180 độ = AIB + AIC
→360 độ - BAC - (ABI + ACI) = 180 độ
ABI + ACI = 180 độ - BAC (LĐ)
Vậy điều giả sử là đúng
⇒B, I, C thẳng hàng
a. Ta có: OD = OB + BD; OC = OA + AC.
Mà OA = OB (gt); BD = AC (gt).
=> OD = OC.
Xét tam giác AOD và tam giác BOC có:
+ OA = OB (gt).
+ \(\widehat{O}\) chung.
+ OD = OC (cmt).
=> Tam giác AOD = Tam giác BOC (c - g - c).
=> AD = BC (Cặp cạnh tương ứng).
b. Tam giác AOD = Tam giác BOC (c - g - c).
=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).
Mà \(\widehat{OAD}+\widehat{DAC}=180^o;\widehat{OBC}+\widehat{CBD}=180^o.\)
=> \(\widehat{DAC}=\widehat{CBD}.\)
hay \(\widehat{EAC}=\widehat{EBD}.\)
c) Tam giác AOD = Tam giác BOC (cmt).
=> \(\widehat{ODA}=\widehat{OCB}\) (2 góc tương ứng).
Xét tam giác EBD và tam giác EAC:
+ \(\widehat{BDE}=\widehat{ACE}\left(\text{}\widehat{ODA}=\widehat{OCB}\right).\) (cmt).
+ BD = AC (gt).
+ \(\widehat{EBD}=\widehat{EAC}\left(cmt\right).\)
=> Tam giác EBD = Tam giác EAC (g - c - g).
=> BE = AE (2 cạnh tương ứng).
Xét tam giác OBE và tam giác OAE:
+ OB = OA (gt).
+ OE chung.
+ BE = AE (cmt).
=> Tam giác OBE = Tam giác OAE (c - c - c).
=> \(\widehat{BOE}=\widehat{AOE}\) (2 góc tương ứng).
=> OE là phân giác của \(\widehat{xOy}\left(đpcm\right).\)
a) Xét \(\Delta AOD\)và \(\Delta\)BOC có:
OA=OB (gt)
\(\widehat{O}\)chung
OD=OC (gt)
=> \(\Delta AOD=\Delta BOC\left(cgc\right)\)
=> AD=BC (2 cạnh tương ứng) (đpcm)
b) Ta có: \(\hept{\begin{cases}OC=OD\\OA=OB\end{cases}\Rightarrow OC-OA=OD-OB\Leftrightarrow AC=BD}\)
Xét tam giác EBD và tam giác EAC có:
AC chung
\(\widehat{DBE}=\widehat{CAE}\)
\(\widehat{BDE}=\widehat{ECA}\)
\(\Rightarrow\Delta EBD=\Delta EAC\left(gcg\right)\)
=> DE=EC (2 cạnh tương ứng)
Xét tam giác OED và tam giác OEC có:
OD=OC (gt)
OE chung
DE=EC (cmt)
=> \(\Delta OED=\Delta OEC\left(ccc\right)\)
=> \(\widehat{DOE}=\widehat{COE}\)(2 góc tương ứng)
=> OE là phân giác \(\widehat{xOy}\)(đpcm)