K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Đề không đầy đủ. Bạn xem lại.

30 tháng 6 2017

Ta tính được HK = KC = 3cm

Do BH > HK ⇒ AB > AK (mối quan hệ giữa hình chiếu và đường xiên)

Tam giác AHK vuông tại H nên HK < AK

Vậy HK < AK < AB. Chọn B

21 tháng 4 2022

loading...

15 tháng 2 2017

Bài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn D

20 tháng 12 2023

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

Hình thang BMNC có \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

c: Ta có: \(MN=\dfrac{BC}{2}\)

mà \(MN=\dfrac{MP}{2}\)

nên BC=MP

Ta có: MN//BC

P\(\in\)MN

Do đó: MP//BC

Xét tứ giác MBCP có

MP//BC

MP=BC

Do đó: MBCP là hình bình hành

Sửa đề: Chứng minh AHCQ là hình chữ nhật

Xét tứ giác AHCP có

N là trung điểm chung của AC và HP

=>AHCP là hình bình hành

Hình bình hành AHCP có \(\widehat{AHC}=90^0\)

nên AHCP là hình chữ nhật

d: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔBAC có

H,M lần lượt là trung điểm của BC,BA

=>HM là đường trung bình của ΔBAC

=>HM//AC và HM=AC/2

Tứ giác AMHC có HM//AC

=>AMHC là hình thang

e:

Ta có: \(HM=\dfrac{AC}{2}\)

\(AN=\dfrac{AC}{2}\)

Do đó: HM=AN

Xét tứ giác AMHN có

HM//AN

HM=AN

Do đó: AMHN là hình bình hành

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Ta có: AHCQ là hình chữ nhật

=>AQ//HC và AQ=HC

Ta có: AQ//HC

H\(\in\)BC

Do đó: AQ//HB

ta có: AQ=HC

HB=HC

Do đó: AQ=HB

Xét tứ giác ABHQ có

AQ//BH

AQ=BH

Do đó: ABHQ là hình bình hành

=>AH cắt BQ tại trung điểm của mỗi đường

Bài 2: 

a: H là trung điểm của BC

nên HB=HC=2,5(cm)

\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)

\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

10 tháng 12 2021

b: Xét tứ giác AHBQ có 

M là trung điểm của AB

M là trung điểm của HQ

Do đó: AHBQ là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBQ là hình chữ nhật

a: \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot3=9\left(cm^2\right)\)

\(S_{AMB}=\dfrac{1}{2}\cdot AH\cdot MB\)

\(S_{MAC}=\dfrac{1}{2}\cdot AH\cdot MC\)

mà MB=MC

nên \(S_{AMB}=S_{AMC}=\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{2}\cdot9=4.5\left(cm^2\right)\)

b: \(S_{ABC}=2\cdot S_{ABM}\)