Tìm x nguyên để các biểu thức sau đạt GTNN
B= |x+4|+1996
C=\(\frac{5}{x-2}\)
D=\(\frac{x+5}{x-4}\)
Làm nhanh cho mk nha ai nhanh mk like cho
Giải ra từng bước cho mk nhé!!Thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C lớn nhất khi (x-3)2+1 bé nhất
=>x2-9 +1 bé nhất
x2-8 bé nhất
=>x2 khác 8 và x2-8 bé nhất => x2 -8=1
=>x2=9=>x=3
D lớn nhất khi |x-2|+2 bé nhất =>x-2 bé nhất=>x-2=0 =>x=2
a) A=\(\frac{5}{\left(x-3\right)^2+1}\)
Do (x-3)2\(\ge\)0=>(x-3)2+1\(\ge\)1=>A\(\le\)5
Vậy MaxA=5 <=>x=3
b)B=\(\frac{4}{\left|x-2\right|+2}\)
Do |x-2|\(\ge\)0=>|x-2|+2\(\ge\)2=>B\(\le\)2
Vậy MaxB=2 <=>x=2
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow x\left(x+1\right)=72\)
\(\Leftrightarrow x=8\)
P/s tham khảo nha
a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)
Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)
Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)
Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)
b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3
Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)
=> x + 2 = 3(x - 3)
=> x + 2 = 3x - 9
=> x - 3x = -9 - 2
=> -2x = -11
=> x = 11/2 (tm)
Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)
c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3
Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)
Để M \(\in\)Z <=> 3 \(⋮\)x - 3
=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 |
x | 4 | 2 (ktm) | 6 | 0 |
Vậy ...
\(\frac{1}{3}\) + \(\frac{5}{6}\): \(\left(x-2\frac{1}{5}\right)\)= \(\frac{3}{4}\)
<=> \(\frac{5}{6}\):\(\left(x-2\frac{1}{5}\right)\)= \(\frac{3}{4}\)- \(\frac{1}{3}\)
<=> \(\frac{5}{6}\) : \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{12}\)
<=> \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{6}\) : \(\frac{5}{12}\)
,<=> \(\left(x-2\frac{1}{5}\right)\)= 2
<=. x = 2 + \(\frac{11}{5}\)
<=> x = \(\frac{21}{5}\)
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)
Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)
b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)
P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên
sau khi rút gọn ta được \(P=\frac{x-4}{x-2}\left(x\ne-3;x\ne2;x\ne-2\right)\)
d,ta có \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\left(x\ne-2;x\ne-3;x\ne2\right)\)
để P nguyên mà x nguyên \(\Leftrightarrow x-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
ta có bảng:
x-2 | 1 | -1 | 2 | -2 |
x | 3(tm) | 1(tm) | 4(tm) | 0(tm) |
vậy \(P\in Z\Leftrightarrow x\in\left\{3;1;4;0\right\}\)
e,x2-9=0
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(kotm\right)\end{cases}}\)
thay x=3 vào P đã rút gọn ta có \(P=\frac{3-4}{3-2}=-1\)
vậy với x=3 thì p có giá trị bằng -1
a, Ta có: \(\left|x+4\right|\ge0\)
=> B = |x + 4| + 1996 \(\ge\)1996
Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4
Vậy GTNN của B là 1996 tại x = -4
b, Để C có giá trị nhỏ nhất
=> x - 2 phải lớn nhất
=> x - 2 = 5 => x = 7
=> GTNN của C = \(\frac{5}{x-2}=\frac{5}{7-2}=\frac{5}{5}=1\)
Vậy GTNN của C = 1 tại x = 7
c, Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
Để D có giá trị nhỏ nhất
=> \(\frac{9}{x-4}\)là số nhỏ nhất
=> x - 4 phải lớn nhất
=> x - 4 = 9 => x = 13
=> GTNN của D = \(\frac{x+5}{x-4}=\frac{13+5}{13-4}=\frac{18}{9}=2\)
Vậy GTNN của D = 2 tại x = 13