Cho ( O ) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với ( O ). Đường thẳng qua A cắt ( O ) tại D và K ( D : ở giữa K, A và B, D cùng phía với AO ). H là giao điểm của AO và BC. Đường thẳng qua D và vuông góc với OB cắt BC tại M. Gọi P : trung điểm của AB. Chứng minh : K, M, P thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này căng đấy =))
a) Do AB là tiếp tuyến của (O) với B là tiếp điểm (gt)
nên : \(AB\perp OB\)( tc tiếp tuyến )
\(\Rightarrow\widehat{ABO}=90^o\)(1)
Do H là trung điểm của dây DE (gt)
nên : \(OH\perp DE\)( liên hệ giữa đường kính và dây )
\(\Rightarrow\widehat{AHO}=90^o\)(2)
- Xét tứ giác ABOH ta có :
+) \(\widehat{ABO}\)và \(\widehat{AHO}\)là hai góc đối diện
+) \(\widehat{ABO}+\widehat{AHO}=90^o+90^o=190^o\)( do (1) và (2))
=> ABOH là tứ giác nội tiếp
=> 4 điểm A , B , O , H thuộc cùng 1 đường tròn ( đpcm )
b) Ta có : +) \(\widehat{B_1}\)là góc giữa tia tiếp tuyến và dây cung chắn cung \(\widehat{BD}\)của (O)
+) \(\widehat{E_1}\)là góc nội tiếp chắn cung \(\widehat{BD}\)của (O)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}=\frac{1}{2}sđ\widebat{BD}\)( tính chất )
Xét 2 tam giác : ABD và AEB có :
\(\widehat{B_1}=\widehat{E_1}\left(cmt\right)\)
\(\widehat{A}\)chung
\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{BD}{EB}\)( tỉ số đồng dạng )
\(\Rightarrow\frac{AB}{AE}=\frac{BD}{BE}\left(đpcm\right)\)
P/s : câu a) có nhiều cách chứng minh khác nữa bạn nhé . Bạn làm cách này có thể hay hơn là vì những gì đã nói ở trên về phương pháp trình bày và đồng thời chứng minh cũng áp dụng được cho nhiều bài khác ( Khi \(\widehat{ABO}\)và \(\widehat{AHO}\)không phải là những góc 90 độ )
góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
góc ABD=góc AKB
góc A chung
=>ΔABD đồng dạng với ΔAKB
=>AB/AK=AD/AB
=>AB^2=AK*AD
AB,AC là tiếp tuyến
=>AB=AC
=>OA là trung trực của BC
=>OB^2=OH*OA; AB^2=AH*AO
OH*OA+AD*AK=OB^2+AB^2=OA^2
AD*AK=AH*AO=AB^2
=>ΔAHD đồng dạng với ΔAKO
=>góc AHD=góc AKO=góc OKD=góc ODK(ΔODK cân tại O)
=>góc OAD=góc HDO+góc ODA
Gọi DM vuông góc OB và cắt BK tại E
ME//AB
=>ME/BP=KM/KP=KE/KB
DE//AB
=>KE/KB=KP/KA
=>KE/AB=KM/KP=KD/KA
=>KE/KB=KD/KA
Xet ΔAPK có
DM//AP
KM/KP=KD/KA
=>K,M,P thẳng hàng