Tính x: x4-25x2+60x-36=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,36-4x^2+20xy-25y^2\\ =36-\left(4x^2-20xy+25y^2\right)\\ =6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]\\ =6^2-\left(2x-5y\right)^2\\ =\left[6-\left(2x-5y\right)\right]\left[6+\left(2x-5y\right)\right]\\ =\left(6-2x+5y\right).\left(6+2x-5y\right)\)
a/
\(=6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]=\)
\(6^2-\left(2x-5y\right)^2=\left[6-\left(2x-5y\right)\right].\left[6+\left(2x-5y\right)\right]\)
a, \(3x^2+4x=2x\Leftrightarrow3x^2+2x=0\Leftrightarrow x\left(3x+2\right)=0\Leftrightarrow x=-\dfrac{2}{3};x=0\)
b, \(25x^2-\dfrac{64}{100}=0\Leftrightarrow25x^2-\left(\dfrac{8}{10}\right)^2=0\Leftrightarrow\left(5x-\dfrac{8}{10}\right)\left(5x+\dfrac{8}{10}\right)=0\)
\(\Leftrightarrow x=\dfrac{4}{25};x=-\dfrac{4}{25}\)
c, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=-4;x=4\)
sửa d, \(x^2+x=6\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=-3;x=2\)
e, \(x^2-7x=-12\Leftrightarrow x^2-7x+12=0\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\Leftrightarrow x=3;x=4\)
e: ta có: \(x^2-7x=-12\)
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)