K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

O A B C H I K D E M N P Q

Đặt AB = BC =CA = a

Qua O kẻ : \(\hept{\begin{cases}DE\text{//}AB\left(D\in BC,E\in AC\right)\\MN\text{//}AC\left(M\in BC,N\in AB\right)\\PQ\text{//}BC\left(P\in AB,Q\in AC\right)\end{cases}}\)

Rõ ràng các tứ giác ABDE , ANMC , PQCB là hình thang và các tam giác ODM , OEQ , ONP là các tam giác đều có OH , OI , OK lần lượt là các đường cao.

Ta có :  BD = AE  ; DH = HM ; CQ = BP ; IQ = IE ; AN = MC ; NK = PK

=> BD + DH + CQ + IQ + AN + NK = AE + HM + BP + IE + MC +PK

=> BH + CI + AK = AI + CH + BK

Mà (BH + CI + AK) + (AI + CH + BK) = AB + BC + AC =3a

=> \(AK+BH+CI=\frac{3a}{2}\) không đổi .

Vậy tổng AK + BH + CI không phụ thuộc vào vị trí điểm O trong tam giác ABC (đpcm)

14 tháng 8 2018

dễ ẹc!!!!!!!!

1 tháng 5 2020

Trả lời :

Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.

- Hok tốt !

^_^

NV
3 tháng 1

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

NV
3 tháng 1

loading...

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)

a Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

=>OH*OA=OB^2=R^2

b: góc ABM=góc ACM

góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM

=>BM là phân giác của góc ABH

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

17 tháng 12 2021

Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp