K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa

Ta có: \(a^2\ge0\forall a\)

\(b^2\ge0\forall b\)

GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất

GTNN của \(a^2;b^2\)là 0

\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)

Vậy GTNN của P là 0

14 tháng 4 2017

a;b là hằng số dương mà bạn

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

12 tháng 6 2017

x+1/y = 1, ta có: 
+ x=1-1/y (1) 
+ (xy+1)/y=1 => xy+1=y (2) 
y+1/x >=4 
<=> (xy+1)/x >=4 
(1), (2) => y/ (y-1) /y >=4 
<=> y^2/ (y-1) >=4 
<=> y^2 >= 4y -4 
<=> y^2 -4y +4 >=0 
<=> (y-2)^2 >=0 (đúng)

12 tháng 6 2017

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 
Cộng lại ba bdt trên ta sẽ có được điều cần chứng minh 

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

NV
2 tháng 5 2019

\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

\(\Rightarrow P_{min}=3\) khi \(x=y=z=1\)

2 tháng 5 2019

Sao lại lớn hơn hoặc bằng 9 /x+y+z ??

26 tháng 12 2016

\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)

\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0

\(\left(2\right)2y\ge0\) với mọi y>0

\(\left(3\right)-3\ge-3\) với x,y

(1)+(2)+(3)=> dpcm

Hiểu thì  làm tiếp

3 tháng 4 2018

Ta có \(P=x^2-x+y^2-y=>\)\(P=x^2+y^2-\left(x+y\right)\)(1)

Mặt Khác : Áp dụng BĐT Cauchy : \(\hept{\begin{cases}x^2+9\ge6x\\y^2+9\ge6y\end{cases}}\)(2)

Từ (1) (2) =>\(P\ge6\left(x+y\right)-18-\left(x+y\right)\)

=> \(P\ge6.6-18-6\)=> \(P\ge12\)(đpcm)