CHỨNG MINH \(\frac{2n+3}{n^2+3n+2}\)là phân số tối giản với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d
Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮3\)
Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\) (1)
Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\) (2)
Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)
Vậy thì ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:
n^3 + 2n chia hết cho d => n(n^3 + 2n) chia hết cho d => n^4 + 2n^2 chia hết cho d (1)
n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d => (n^2 + 1)^2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2) suy ra :
(n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d => 1 chia hết cho d => d=+-1
Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1
Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau .
Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa .
Vậy không thể rút gọn và phân số này đã tối giản
Hướng dẫn giải:
Gọi d là ƯCLN của 2n + 5 và 3n + 7
⇒ (2n + 5)⋮ d và (3n + 7)⋮ d
⇒ [3(2n + 5) - 2(3n + 7)] = 1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
gọi d=ƯCLN(3n+2;2n+1)
lập luận d = 1
kết luận\(\frac{3n+1}{2n+1}\)tối giản
Gọi \(\left(3n+2;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n
Hướng dẫn giải:
Gọi d là ƯCLN của 3n - 2 và 4n - 3
⇒ (3n - 2)⋮ d và (4n - 3)⋮ d
⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Hướng dẫn giải:
Gọi d là ƯCLN của 3n - 2 và 4n - 3
⇒ (3n - 2)⋮ d và (4n - 3)⋮ d
⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
=> n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
=> (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d hay 1 chia hết cho d
Do đó (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối giản (Đ.P.C.M)
tk cho mk nha $_$