K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

$a^3+b^3=2(c^3-8d^3)$

$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$

$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$ 

Khi đó:

$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$

$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:

$a^3+b^3+c^3+d^3\vdots 3$

$3ab(a+b)\vdots 3$

$3cd(c+d)\vdots 3$

$3(a+b)(c+d)(a+b+c+d)\vdots 3$

Vậy: 

$(a+b+c+d)^3\vdots 3$

$\Rightarrow a+b+c+d\vdots 3$

29 tháng 7 2021

tại sao (a+b+c+d)3=(a+b)3+(c+d)3+3(a+b)(c+d)(a+b+c+d) đấy ạ?

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$a+b+c=0\Rightarrow a+b=-c$

Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé. 

9 tháng 1 2021

Rõ ràng trong hai số a, b, c tồn tại một số chẵn (Vì nếu a, b, c đều lẻ thì a3 + b3 + c3 là số lẻ, không chia hết cho 14).

Ta lại có \(a^3;b^3;c^3\equiv0;1;-1\).

Do đó nếu a, b, c đều không chia hết cho 7 thì \(a^3;b^3;c^3\equiv1;-1\left(mod7\right)\Rightarrow a^3+b^3+c^3⋮̸7\).

9 tháng 1 2021

Làm tiếp: Suy ra trong ba số a, b, c có ít nhất một số chia hết cho 7 \(\Rightarrow abc⋮7\).

Vậy abc chia hết cho 14.

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

12 tháng 2 2022

giúp mình câu hỏi này với ah.