tính nhanh tổng sau
1 + 1 phần 3 + 1 phần 9 + 1 phần 27 +1 phần 81 + 1 phần 243 + 1 phần 729
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Bài 1 :
\(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{1280}\)
\(\Rightarrow A\times2=\frac{2}{5}-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{1280}\right)-\frac{1}{1280}\)
\(\Rightarrow A\times2=\frac{2}{5}-A-\frac{1}{1280}\)
\(\Rightarrow A\times2+A=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow A=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow A=\frac{511}{1280}\)
#)Giải :
Bài 2 :
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{59049}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{10}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\)
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}...+\frac{1}{3^9}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{10}}\right)\)
\(2B=1-\frac{1}{3^{10}}\)
\(B=\frac{1-\frac{1}{3^{10}}}{2}\)
1. Tinh:
a) 1 + 1 phần 3 + 1 phần 9 + 1 phần 27 + 1 phần 81 = 81/81 + 27/81 + 9/81 + 3/81 + 1/81 = 121/81
1 + 1/3 + 1/9+1/27+1/81+1/243+1/729
=1+1-1/3+1/3-1/9+1/9-1/27-1/27-1/81+1/81-1/243
= 2 - 1/243
=485/243
a) \(27^{64}:81^{20}=3^{192}:3^{80}=3^{112}\)
b) \(\left(\dfrac{1}{8}\right)^{20}:\left(\dfrac{1}{16}\right)^9=\left(\dfrac{1}{2}\right)^{60}:\left(\dfrac{1}{2}\right)^{36}=\left(\dfrac{1}{2}\right)^{24}\)
c) \(\dfrac{1}{3}:\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{5}{3}-\dfrac{1}{6}=\dfrac{10}{6}-\dfrac{1}{6}=\dfrac{9}{6}=\dfrac{3}{2}\)
tham khảo
Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
= 1 - 1/729
A x 2 = 728/729
A = 364/729
\(=1\frac{364}{729}\)\(=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}=1+\frac{243}{729}+\frac{81}{729}+\frac{27}{729}+\frac{9}{729}+\frac{3}{729}+\frac{1}{729}=1\frac{ }{ }\)
\(=1\frac{364}{729}\)