K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2023

Để chứng minh rằng tồn tại một số có dạng 20232023...2023 chia hết cho 19, ta sẽ chứng minh rằng tồn tại một số nguyên n sao cho số nguyên s có dạng sau chia hết cho 19:

s = 20232023...2023 (n chữ số 2023)

Ta có thể biểu diễn s dưới dạng:

s = 2023 x 10⁰ + 2023 x 10¹ + 2023 x 10² + ... + 2023 x 10^(n-1)

= 2023 x (10⁰ + 10¹ + 10² + ... + 10^(n-1))

Để dễ dàng chứng minh, ta sẽ tính tổng sau đây:

10⁰ + 10¹ + 10² + ... + 10^(n-1) = (10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1) + n

= 111...1 (n số 1) + n

= (n + 1) x 111...1 (n số 1)

Do đó:

s = 2023 x (n + 1) x 111...1 (n số 1)

Ta có thể dễ dàng thấy rằng 19 chia hết cho 2023, do đó ta chỉ cần chứng minh rằng (n + 1) x 111...1 (n số 1) chia hết cho 19.

Ta có:

111...1 (n số 1) = (10⁰ + 10¹ + 10² + ... + 10^(n-1)) / 9

= [(10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1)] / 9

= [(n + 1) x 111...1 (n số 1)] / 9

Do đó:

s = 2023 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / 9

= 19 x 1064819 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / (19 x 9)

Như vậy, ta chỉ cần chọn một số nguyên n sao cho (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì 19 là số nguyên tố và không chia hết cho 3, nên ta có thể chọn n = 18, để (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì vậy, tồn tại một số có dạng 20232023...2023 (18 chữ số 2023) chia hết cho 19.

17 tháng 3 2023

cảm ơn bạn nghen

2 tháng 12 2023

bạn dùng chatgpt ạ?

tại vì cách giải của định lý dirichlet không như thế này.

2 tháng 12 2023

Ko phải tôi ko cần chatgpt nhưng ứng dụng này làm sai mà t xóa app chatgpt như thế

AH
Akai Haruma
Giáo viên
8 tháng 3 2023

Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$

Thực chất là với  mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$

16 tháng 3 2023

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

25 tháng 10 2023

Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .

Nếu một trong các số trên chia hết cho 1995 thì dễ có đpcm.

Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 khả năng sẽ chỉ có 1994 

dư là 1 ; 2 ; 3 ; ... ; 1994.

Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia

cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là

Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).

15 tháng 1 2017

bạn ơi thế thì phải có 1991 số 2003 nha

15 tháng 1 2017

\(gcd\left(1991;10^k\right)=1\) với mọi \(k\).

Giả sử ko có số nào dạng \(2003...2003\) mà chia hết cho \(1991\).

Xét \(1992\) số \(2003,20032003,...,20032003...2003\) (số cuối cùng có \(1992\) lần lặp \(2003\)).

Theo nguyên lí Dirichlet thì tồn tại 2 số cùng số dư khi chia cho \(1991\).

Gọi chúng là  \(2003...2003\) có \(m\) và \(n\) lần lặp số \(2003\).

Ta trừ chúng cho nhau, ở đây cho \(m>n\) thì hiệu là con số này:

\(2003...2003000...000\) (trong đó có \(m-n\) số \(2003\)và \(n\) số \(0\))

Số này chia hết cho \(1991\).

Mà \(gcd\left(1991;10^n\right)=1\) nên \(2003...2003\) (với \(m-n\) số \(2003\)) chia hết cho \(1991\) (vô lí)

Vậy điều giả sử là sai, suy ra đpcm.

20 tháng 2 2020

mình cần gấp lắm nhanh lên nha