K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2023

bn phải đăng bài tập chứ

a: \(CB=\sqrt{6^2+8^2}=10\)

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3; CD=5

15 tháng 10 2023

a: ΔABC vuông tại A

=>\(\widehat{C}+\widehat{B}=90^0\)

=>\(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{12}{BC}=sin50\)

=>\(BC=\dfrac{12}{sin50}\simeq15,66\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}=\sqrt{15.66^2-12^2}\simeq10,06\left(cm\right)\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{12}{10.06}\simeq1,19\)

=>DB=1,19DC

DB+DC=BC

=>1,19DC+DC=15,66

=>\(DC\simeq7,15\left(cm\right)\)

DB=15,66-7,15=9,51(cm)

 

24 tháng 5 2023

a, Xét ΔABC vuông tại A ta có:

\(BC^2=AB^2+AC^2\left(py-ta-go\right)\)

        \(=6^2+8^2\)

        \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

b, Xét ΔABC và ΔABH ta có:

\(\widehat{B}\) \(chung\)

\(\widehat{BAC}=\widehat{AHB}=90^0\)

→ΔABC ∼ ΔABH(g-g)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\\ \rightarrow AB.AB=BH.BC\\ \Rightarrow AB^2=BH.BC\)

c, Vì \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\left(cmt\right)\)

\(hay\dfrac{6}{BH}=\dfrac{10}{6}\\ \Rightarrow BH=\dfrac{6.6}{10}=3,6\left(cm\right)\)

 

 

Xét ΔABC có AD là phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}hay\dfrac{6}{BD}=\dfrac{8}{CD}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{6}{BD}=\dfrac{8}{CD}=\dfrac{6+8}{10}=\dfrac{14}{10}=\dfrac{7}{5}\\ \Rightarrow BD=\dfrac{6.5}{7}=\dfrac{30}{7}\left(cm\right)\)

a: BC=căn 6^2+8^2=10cm

b: ΔABC vuông tại A có AH vuông góc BC

nên AB^2=BH*BC

c: BH=6^2/10=3,6cm

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(BC=\sqrt{225}=15\left(cm\right)\)

b: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)

Do đó: ΔBAD=ΔBMD

=>DA=DM

c: Xét ΔDAE vuông tại A và ΔDMC vuông tại M có

DA=DM

\(\widehat{ADE}=\widehat{MDC}\)(hai góc đối đỉnh)

Do đó: ΔDAE=ΔDMC

=>AE=MC

Ta có: ΔBAD=ΔBMD

=>BA=BM

Xét ΔBEC có \(\dfrac{BA}{AE}=\dfrac{BM}{MC}\)

nên AM//EC

18 tháng 3 2022

ko bít

 

18 tháng 3 2022

CHỜ CHÚT

d: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>góc BKC=góc BCK

7 tháng 1 2020

bạn tự vẽ hình nha chờ mik giải

2 tháng 4 2020

/lmio;g;hiugl7iul,ỳuyjfjhhhj