Tìm a ∈ ℤ sao cho:
4a + 19 là bội số của a + 3
Giúp mk nhanh nha ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 4a+16 là bội của a-1 thì (4a+16) chia hết cho (a-1) hay (4a+16)/(a-1) thuộc Z
(4a+16)/(a-1) = 4+20/(a-1)
(a-1) thuộc Ư(20) => a thuộc {19, -21, 9,-11, 4, -6, 1, -3, 0, -2}.
4a + 16 là bội số của a - 1
\(\Rightarrow\)4a + 16 \(⋮\)a - 1
\(\Rightarrow\)(4a - 4 ) + 20 \(⋮\)a - 1
\(\Rightarrow\)4. (a - 1 ) + 20 \(⋮\)a - 1
Vì a - 1 \(⋮\)a - 1
nên 4.( a - 1 ) \(⋮\)a - 1
\(\Rightarrow\)20 \(⋮\)a - 1
\(\Rightarrow\)a - 1 \(\in\)Ư(20)
\(\Rightarrow\)a - 1 \(\in\){ 1 ; -1 ; 2 ; -2 ; 4; -4 ; 5 ; -5 ; 10 ; -10 ; 20 ; -20}
\(\Rightarrow\)a \(\in\){ 2 ; 0 ; 3 ; -1 ; 5 ; -3 ; 6 ; -4 ; 11 ; -9 ; 21 ; -19}
Vậy a \(\in\){ 2 ; 0 ; 3 ; -1 ; 5 ; -3 ; 6 ; -4 ; 11 ; -9 ; 21 ; -19}
~ HOK TỐT ~
trả lời.......................
ok...............................
đúng nhé......................
a+6 là ước số của 4a+9
\(\Rightarrow4a+9⋮a+6\)
\(\Rightarrow4\left(a+6\right)-15⋮a+6\)
\(\Rightarrow15⋮a+6\)
Tới đây bí
\(7a-8\) là bội của \(a-2\)
\(\Leftrightarrow7a-8⋮a-2\)
\(\Leftrightarrow\left(7a-14\right)+6⋮a-2\)
\(\Leftrightarrow6⋮a-2\) ( Do: \(7a-14⋮a-2\) )
\(\Leftrightarrow a-2\inƯ6=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau:
\(a-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(a\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
Vậy: .............................
ta có 7x-58 chia hết cho x-6
x-6 chia hết cho x-6
=> 7x-58 chia hết cho x-6
7(x-6) chia hết cho x-6
=> 7x-58 chia hết cho x-6
7x-42 chia hết cho x-6
=> (7x-58)-(7x-42) chia hết cho x-6
=> (-16) chia hết cho x-6
=> x-6 thuộc ước của -16
=> x-6 thuộc {-16;-8;-4;-2;-1;1;2;4;8;16}
=> x thuộc {-10;-2;2;4;5;7;8;10;14;20}
OK bài của mình đúng đó nhưng có vài kí hiệu mình chưa bik viết nên mình biểu thị bằmg lời nhé!
ta có 7x-58 chia hết cho x-6
x-6 chia hết cho x-6
=> 7x-58 chia hết cho x-6
7(x-6) chia hết cho x-6
=> 7x-58 chia hết cho x-6
7x-42 chia hết cho x-6
=> (7x-58)-(7x-42) chia hết cho x-6
=> (-16) chia hết cho x-6
=> x-6 thuộc ước của -16
=> x-6 thuộc {-16;-8;-4;-2;-1;1;2;4;8;16}
=> x thuộc {-10;-2;2;4;5;7;8;10;14;20}
Có vài kí hiệu mình chưa bik viết nên mình biểu thị bằmg lời nhé!
\(4c\in B\left(c+3\right)\)
\(\Rightarrow4c⋮c+3\)
mà \(c+3⋮c+3\)
Từ 2 điều trên suy ra:
\(4c-\left(c+3\right)⋮c+3\)
\(=4c-c-3⋮c+3\)
\(=3c-3⋮c+3 \)
\(\Rightarrow3c⋮c+3\)và \(-3⋮c+3\)
\(\Rightarrow c+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng:
c+3 | -1 | 1 | -3 | 3 |
c | -4 | -1 | -6 | 0 |
Vậy \(c\in\left\{-6;-4;-1;0\right\}\)
học tốt
\(4a+19\text{ là bội của }a+3\)
\(\Leftrightarrow4a+19⋮a+3\)
\(a+3⋮a+3\)
\(\Rightarrow4\left(a+3\right)⋮a+3\)
\(4a+12⋮a+3\)
\(\Rightarrow\left(4a+19\right)-\left(4a+12\right)⋮a+3\)
\(4a+19-4a+12⋮a+3\)
\(31⋮a+3\)
\(\Rightarrow a+3\in\text{Ư}\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng : .....................
Tự làm típ nhó !
4a + 19 là bội số của a + 3
\(\Rightarrow4a+19⋮a+3\)
\(4a+12+7⋮a+3\)
\(4\left(a+3\right)+7⋮a+3\)
\(\Rightarrow\hept{\begin{cases}4\left(a+3\right)⋮a+3\\7⋮a+3\end{cases}}\)
\(7⋮a+3\)
\(\Rightarrow a+3\in\)Ư (7) = {-7;-1;1;7}
\(\Rightarrow a\in\left\{-11;-4;-2;4\right\}\)