CHỨNG TỎ RẰNG:
\(\frac{2n+1}{3n+2}\)là ps tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n
Gọi \(d\) là \(UCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)
a. Gọi d là ƯCLN của \(\frac{3n-1}{5n-2}\) , ta có :
\(\left(5n-2\right)-\left(3n-1\right)⋮d\)
\(\Rightarrow3\left(5n-2\right)-5\left(3n-1\right)⋮d\)
\(\Rightarrow15n-6-15n-5⋮d\)
\(\Rightarrow1⋮d\)
Vậy A tối giản với mọi n
b làm tương tự
a) Gọi ƯCLN(3n - 1;5n - 2) = d
=> \(\hept{\begin{cases}3n-1⋮d\\5n-2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(3n-1\right)⋮d\\3\left(5n-2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}15n-5⋮d\\15n-6⋮d\end{cases}}\Rightarrow\left(15n-5\right)-\left(15n-6\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> 3n - 1 ; 5n - 2 là 2 số nguyên tố cùng nhau
=> \(\frac{3n-1}{5n-2}\)là phân số tối giản
b) Gọi ƯCLN(2n + 3 ; 2n - 1) = d
=> \(\hept{\begin{cases}2n+3⋮d\\2n-1⋮d\end{cases}}\Rightarrow2n+3-\left(2n-1\right)⋮d\Rightarrow4⋮d\Rightarrow d\inƯ\left(4\right)\Rightarrow d\in\left\{1;2;4\right\}\)
Vì 2n + 3 ; 2n - 1 là số lẻ với mọi \(n\inℕ^∗\)
=> 2n + 3 ; 2n - 1 không chia hết cho 2 ; 4
=> d = 1
=> 2n + 3 ; 2n - 1 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
mình pt làm câu sau thôi:
đặt UCLN của (2n+1, 3n+1) d
=> 2n+1 chia hết cho d và 3n+1 chia hết cho d
=> 6n+3 chia hết cho d và 6n+2 chia hết cho d
=> 1chia hết cho d và d=1
bài tương tự nha bn
Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?
gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.
Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1
Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:
\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)
\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)
Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)
\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)
Vì \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.
Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.
Gọi d là UCLN của 2n +1 và 3n+2
2n+1\(⋮\)d
\(3n+2⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d
\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)
\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)
Gọi UCLN(2n + 1 ; 3n + 2) = d
2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d
=> [(6n + 4) - (6n + 3)] chia hết cho d
1 chia hết cho d => d = 1
Vì UCLN(2n + 1 ; 3n + 2) = 1
Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)
Lời giải:
Gọi d là ƯCLN\((2n+1,3n+2)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
=> \(\hept{\begin{cases}3(2n+1)⋮d\\2(3n+2)⋮d\end{cases}}\)
=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
=> \((6n+4)-(6n+3)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
Gọi d=ƯCLN(2n+1;3n+2)
Ta có 2n+1 : d
3n+2 :d ( mình viết dấu : thay cho dấu chia hết nhé)
=>3(2n+1) :d
2(3n+2):d
=>6n+3 :d
6n+4 :d
=> (6n+4)-(6n+3):d
=>1:d
=>d=1
=> ƯCLN(2n+1;3n+2)=1
Vậy phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản
Gọi d là ƯCLN của 2n+1 và 3n+2
Ta có: 2n+1 chia hết cho d và 3n+2 chia hét cho d
=> (2n+1) - (3n+2) chia hết cho d
=> 3(2n+1) - 2(3n+2) chia hết cho d
=> -1 chia hét cho d
=> d C Ư(-1)=[-1;1]
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
k mình nha KHÁNH HUYỀN
Gọi d là ƯCLN(2n+1, 3n+2)
suy ra: 2n+1 chia hết cho d