K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

vì \(n\ge2\)nên \(2^n⋮4\)

\(\Rightarrow2^{2^n}\)có dạng là \(2^{4k}\left(k\in N^x\right)\)

Mà \(2^{4k}=16^k\)

Vì 1 số có tận cùng là 6 lũy thừa với số mũ khác 0 đều cho ta một số có tận cùng là 6

\(\Rightarrow2^{2^n}\)có tận cùng là 6 \(\Rightarrow2^{2^n}+1\)có tận cùng là 7 (đpcm)

12 tháng 3 2017

\(2^{2^n}\forall n\in N,n\ge2\) thì \(2^{2^n}\) là số chẵn nên không thể tận cùng là 7, bạn xem lại đề

thiếu +1

15 tháng 4 2017

Vì n lớn hơn hoặc bằng 2

Nên n bằng 2 là bé nhất

Suy ra 22 mũ n = 22 mũ 2 = 24

Mà 24 có tận cùng 6

Nên 24 + 1 tận cùng 7

Với các trường hợp n lớn hơn 2 thì 22 mũ n đều tận cung 6 và 22 mũ n + 1 tận cùng 7 ( đpcm )
 

12 tháng 6 2017

TẤT CẢ CÁC SỐ \(5^n\)ĐỀU CÓ TẬN CÙNG LÀ 5 THÌ 5+2 = 7

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

5 tháng 1 2016

Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
                      1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau