- Tìm giá trị nhỏ nhất của đa thức g(x)=16x^4-72x^2+90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của đa thức g(x)=16x4-72x2+90
Ta có:
g(x)=16x4−72x2+90
=(4x2)2−2.4x2.9+92+9
=(4x2−9)2+9
Với mọi giá trị của x ta có: (4x2−9)2≥0
⇒g(x)=(4x2−9)2+9≥9
Dấu "=" xảy ra khi ⇔(4x2-9)2=0⇔x=± \(\frac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\)là 9 tại x=\(\pm\frac{3}{2}\)
do 16x4 \(\ge\)0
72x2 \(\ge\)0
=> 16x^4 - 72x^2 \(\ge\)0
=> 16x^4 - 72x^2 + 90 \(\ge\)0
hay G(x) \(\ge\)90
GTNN của G(x) = 90
dấu = xảy ra <=> x = 0
a) Giải:
\(f\left(x\right)=\left(m^2-25\right)x^4+\left(20+4\right)x^3+7x^2-9\) là đa thức bậc \(3\) theo biến \(x\) khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
Vậy \(m=5\) thì \(f\left(x\right)\) là đa thức bậc \(3\) theo biến \(x\)
b) Ta có:
\(g\left(x\right)=16x^4-72x^2+90\)
\(=\left(4x^2\right)^2-2.4x^2.9+9^2+9\)
\(=\left(4x^2-9\right)^2+9\)
Với mọi giá trị của \(x\) ta có: \(\left(4x^2-9\right)^2\ge0\)
\(\Rightarrow g\left(x\right)=\left(4x^2-9\right)^2+9\ge9\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left(4x^2-9\right)^2=0\Leftrightarrow x=\pm\dfrac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\) là \(9\) tại \(x=\pm\dfrac{3}{2}\)
Xét hàm số f(x) = x 3 + 3 x 2 − 72x + 90 trên đoạn [-5;5]
f′(x) =3 x 2 + 6x − 72;
f′(x) = 0
f(−5) = 400; f(5) = −70; f(4) = −86
Ngoài ra, f(x) liên tục trên đoạn [-5;5] và f(−5).f(5) < 0 nên tồn tại x 0 ∈ (−5;5) sao cho f( x 0 ) = 0
Ta có g(x) = |f(x)| ≤ 0 và g( x 0 ) = |f( x 0 )| = 0;
g(−5) = |400| = 400
g(5) = |−70| = 70; g(4) = |f(4)| = |−86| = 86
Vậy min g(x) = g( x 0 ) = 0; max g(x) = g(−5) = 400
Đáp án D.
Sử dụng máy tính cầm tay chức năng TABLE với thiết lập Start ‒5; End 5; Step 1 thì ta có
Từ bảng giá trị ta kết luận được giá trị lớn nhất của hàm số đạt được là 400 khi x = − 5 .
Từ bảng giá trị trên ta chưa thể kết luận được giá trị nhỏ nhất của hàm số.
Ta thấy x 3 + 3 x 2 − 72 x + 90 ≥ 0, ∀ x ∈ ℝ .
Dấu bằng xảy ra khi x 3 + 3 x 2 − 72 x + 90 = 0 .
Trong ba nghiệm trên ta thấy nghiệm x 3 ∈ − 5 ; 5 . Từ đây ta có thể kết luận giá trị nhỏ nhất của hàm số đạt được là 0 khi x = x 3 .
Vậy tổng cần tìm là 400. Ta chọn D.
Đặt \(K=4x^2+2y^2+4xy-16x-12y+5\)
\(K=\left(4x^2+4xy+y^2\right)+y^2-16x-12y+5\)
\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).4+16\right]+\left(y^2-4y+4\right)-15\)
\(K=\left(2x+y-4\right)^2+\left(y-2\right)^2-15\)
Mà \(\left(2x+y-4\right)^2\ge0\forall x;y\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow K\ge-15\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy \(K_{Min}=-15\Leftrightarrow\left(x;y\right)=\left(1;2\right)\)