Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có bậc là 3 => ( m2 - 25 ) x4 = 0
hay ( m2 - 25 ) = 0 => m2 = 25
=> m = 5
Ta có : \(f_{\left(x\right)}=\left(m^2-25\right)x^4+\left(20+4m\right)x^3+7x^2-9\)
Để đa thức \(f_{\left(x\right)}\) là đa thức bậc \(3\) thì :
\(m^2-25=0\)
\(\Leftrightarrow m^2=25\)
\(\Leftrightarrow m=\pm5\)
Vậy để đa thức \(f_{\left(x\right)}\) là đa thức bậc 3 theo biến x thì \(m=\pm5\)
Tìm giá trị nhỏ nhất của đa thức g(x)=16x4-72x2+90
Ta có:
g(x)=16x4−72x2+90
=(4x2)2−2.4x2.9+92+9
=(4x2−9)2+9
Với mọi giá trị của x ta có: (4x2−9)2≥0
⇒g(x)=(4x2−9)2+9≥9
Dấu "=" xảy ra khi ⇔(4x2-9)2=0⇔x=± \(\frac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\)là 9 tại x=\(\pm\frac{3}{2}\)
f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)
g(x)=\(x^5-7x^4+4x^3-3x-9\)
f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)
=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))
=\(-14x^4+2x^3+x^2+x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến :
\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)
b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)
=> h(x) = -14x4 + 2x3 + x2 +x
a) Giải:
\(f\left(x\right)=\left(m^2-25\right)x^4+\left(20+4\right)x^3+7x^2-9\) là đa thức bậc \(3\) theo biến \(x\) khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
Vậy \(m=5\) thì \(f\left(x\right)\) là đa thức bậc \(3\) theo biến \(x\)
b) Ta có:
\(g\left(x\right)=16x^4-72x^2+90\)
\(=\left(4x^2\right)^2-2.4x^2.9+9^2+9\)
\(=\left(4x^2-9\right)^2+9\)
Với mọi giá trị của \(x\) ta có: \(\left(4x^2-9\right)^2\ge0\)
\(\Rightarrow g\left(x\right)=\left(4x^2-9\right)^2+9\ge9\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left(4x^2-9\right)^2=0\Leftrightarrow x=\pm\dfrac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\) là \(9\) tại \(x=\pm\dfrac{3}{2}\)
b sai rồi