K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

Em mới lớp 8 nên trình bày hơi lỗi xin anh thông cảm.

Xét tam giác HAC và tam giác ABC, ta có:

Góc C: góc chung

góc AHC = góc BAC (=90 độ)

Do đó: tam giác HAC đồng dạng với tam giác ABC

\(\Rightarrow\)\(\frac{HA}{HC}=\frac{AB}{AC}\Rightarrow AH=\frac{ABxHC}{AC}\left(1\right)\)

Xét tam giác HBA và tam giác ABC, ta có:

Góc B: góc chung

góc AHB = góc BAC (=90 độ)

Do đó: tam giác HAC đồng dạng với tam giác ABC

\(\Rightarrow\)\(\frac{HA}{HB}=\frac{AC}{ÁB}\Rightarrow AH=\frac{HBxAC}{AB}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\frac{HBxAC}{AB}=\frac{HCxAB}{AC}\Rightarrow\frac{\left(AB\right)^2}{\left(AC\right)^2}=\frac{HB}{HC}=\frac{9}{4}\Rightarrow\frac{AB}{AC}=\frac{3}{2}\)

VÌ AD là đường phân giác của tam giác ABC nên:

\(\frac{DC}{DB}=\frac{AC}{AB}=\frac{2}{3}\)

Vậy \(\frac{DC}{DB}=\frac{2}{3}\)

10 tháng 4 2017

k cho em nha :V :D

29 tháng 7 2018

B A H D C

\(\frac{HC}{HB}=\frac{9}{4}\)\(\Rightarrow\)\(\frac{HC}{9}=\frac{HB}{4}=k\)\(\Rightarrow\)\(HC=9k;\)\(HB=4k\)

Áp dụng hệ thức lượng ta có:

\(AH^2=HB.HC\)\(\Rightarrow\)\(AH^2=36k^2\)\(\Rightarrow\)\(AH=6k\)

Xét \(\Delta AHB\)và  \(\Delta CHA\)có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{BAH}=\widehat{ACH}\)  (cùng phụ với HAC)

suy ra:  \(\Delta AHB~\Delta CHA\)(g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{HB}{HA}=\frac{4k}{6k}=\frac{2}{3}\)

AD là phân giác tam giác ABC

=>  \(\frac{DC}{DB}=\frac{AC}{AB}=\frac{3}{2}\)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=30^2=900\)

\(\Leftrightarrow HC^2=1296\)

\(\Leftrightarrow HC=36\left(cm\right)\)

\(\Leftrightarrow HB=25\left(cm\right)\)

\(\Leftrightarrow BC=36+25=61\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=5\sqrt{61}\left(cm\right)\\AC=6\sqrt{61}\left(cm\right)\end{matrix}\right.\)

23 tháng 9 2018

C B E A I D H

26 tháng 9 2018

A B C D H E I

a) Mình nghĩ đề đúng phải là: CMR: \(\frac{HB}{HC}=\frac{IB^2}{IA^2}\)

Xét \(\Delta\)BEC có: Đường trung tuyến BA; BA vuông góc CE (tại A) => \(\Delta\)BEC cân tại B

=> ^BEC = ^BCE hay ^IEA = ^ACB. Mà ^ACB = ^IAB (=^HAB) (Cùng phụ ^HAC) nên ^IEA = ^IAB

Xét \(\Delta\)BAI và \(\Delta\)AEI có: ^AIE chung; IAB = ^IEA => \(\Delta\)BAI ~ \(\Delta\)AEI (g.g) 

=> \(\frac{IB}{IA}=\frac{AB}{EA}\)=> \(\frac{IB}{IA}=\frac{AB}{AC}\)(Do AE=AC) => \(\frac{IB^2}{IA^2}=\frac{AB^2}{AC^2}\)

Dễ thấy \(\Delta\)BAH ~ \(\Delta\)ACH (g.g) => \(\frac{S_{BAH}}{S_{ACH}}=\frac{AB^2}{AC^2}\)

Do đó: \(\frac{IB^2}{IA^2}=\frac{S_{BAH}}{S_{ACH}}\). Lại có: \(\frac{S_{BAH}}{S_{ACH}}=\frac{HB.AH}{HC.AH}=\frac{HB}{HC}\)=> \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(đpcm).

b) Theo ĐL đường phân giác trong tam giác thì \(\frac{DB}{DC}=\frac{AB}{AC}\Rightarrow\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AC=\frac{4}{3}AB\)

Áp dụng ĐL Pytago cho \(\Delta\)ABC vuông tại A: \(AB^2+AC^2=BC^2\). Thay AC=4/3.AB, ta có: 

\(AB^2+\frac{16}{9}AB^2=BC^2=1225\)\(\Rightarrow AB^2=441\) (cm)

Theo hệ thức lượng: \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=12,6\)(cm)

Suy ra: \(HD=DB-BH=15-12,6=2,4\)\(CH=BC-BH=22,4\)

Mặt khác \(\Delta\)BAI ~ \(\Delta\)AEI (cmt) => \(IA^2=IB.IE\)  (1)

\(\Rightarrow IA^2=IB^2+IB.BE=IB^2+IB.BC=IB^2+35.IB\)

Lại có: \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(câu a) nên \(\frac{IB^2}{IB^2+35.IB}=\frac{HB}{HC}=\frac{12,6}{22,4}=\frac{9}{16}\)

Đặt IB=x (x>0) , ta có phương trình sau: 

\(\frac{x^2}{x^2+35x}=\frac{9}{16}\Rightarrow9x^2+315x=16x^2\Leftrightarrow7x^2-315x=0\)

\(\Leftrightarrow7x\left(x-45\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=45\end{cases}}\)(loại TH x=0 vì x > 0) 

=> \(IB=45\)(cm) => IE = IB + BE = IB + BC = 45 + 35 = 80 (cm). Thế vào (1), ta được:

\(IA^2=45.80\Rightarrow IA=60\)(cm)

Ta sẽ có: \(S_{BAE}=S_{ABC}=\frac{AB.AC}{2}=\frac{AB.\frac{4}{3}AB}{2}=294\)(cm2

\(S_{ABI}=\frac{BH.AI}{2}=\frac{12,6.60}{2}=378\)(cm2); \(S_{AID}=\frac{HD.AI}{2}=\frac{2,4.60}{2}=72\)(cm2)

Theo t/c diện tích miền đa giác: \(S_{AEID}=S_{BAE}+S_{ABI}+S_{AID}=294+378+72=744\)(cm2

Vậy \(S_{AEID}=744\)cm2.

a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)

AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=20/7

=>DB=60/3cm; DC=80/7cm

b: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

c: HC=16^2/20=256/20=12,8cm