Chứng minh rằng: a^2 + b^2 + c^2 >= ab + ac + bc với mọi a; b; c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0
luôn đúng với mọi a;b;c
suy ra ĐPCM
ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)
<=> \(a^2+b^2+c^2\ge ab+bc+ca\)
Ta sẽ chứng minh bằng biến đổi tương đương như sau :
Ta có ; \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu được cm.
ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) với mọi a, b, c
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge ab+bc+ac+2ab+2bc+2ac\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
Giả sử:
2a^2 + 2b^2 + 2c^2 > hoặc = 2ab + 2ac + 2bc
<=>( a^2 -2ab + b^2) + (a^2 -2ac + c^2)+(b^2 -2bc + c^2) > hoặc = 0
=<=>(a-b)^2 + (a-c)^2 + (b-c)^2 > hoặc = 0 ( BĐT luôn đúng ) => 2a^2 + 2b^2 + 2c^2 >hoặc = 2ab + 2ac + 2bc là đúng ! <=> a^2 + b^2 + c^2 > hoặc = ab+bc+ac.
Dấu = xảy ra khi : a=b=c
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
dề sai kìa thế này mới đúng \(a^2+b^2+c^2\ge ab+bc+ca\)
áp dung BĐT co6si ta có
\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)
cộng vế với vế có
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
chia 2 vế cho 2 suy ra (dpcm)
Lại copy!!!
Giải:
Áp dụng BĐT Bunhiacopski
Xét cặp số \(\left(1,1,1\right)\) và \(\left(a,b,c\right)\) ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Ta chứng minh: \(a^3+b^3\ge ab\left(a+b\right)\)
Thực vậy, BĐT tương đương:
\(a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với a; b dương)
Vậy BĐT được chứng minh
Tương tự ta có: \(b^3+c^3\ge bc\left(b+c\right)\); \(c^3+a^3\ge ca\left(c+a\right)\)
Cộng vế với vế:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2\left(a^3+b^3+c^3\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)