CẦN GẤP Ạ
Cho tam giác ABC nhọn (AB < AC) đường cao AH (H thuộc BC) kẻ HK vuông góc với AC (K thuộc AC)
a/ Chứng minh tam giác AHC đồng dạng với tam giác HKC
b/ Chứng minh KH^2=AK.AC
c/ Biết AH=3cm, HC=4cm. Tính diện tích tam giác AHC/diện tích tam giác HKC
a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔHKC
b: Xet ΔHAC vuông tại H có HK là đường cao
nên HK^2=AK*KC
c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
CK=4^2/5=3,2cm
=>AK=1,8cm
=>HK=2,4cm
\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)