K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:a) tính giá trị các biểu thức sau:A=2[(62 - 24) : 4] + 2014B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)Câu 2:a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)Câu 3: a) tìm số tự nhiên n để...
Đọc tiếp

Câu 1:

a) tính giá trị các biểu thức sau:

A=2[(6- 24) : 4] + 2014

B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)

b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

Câu 2:

a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42

c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)

Câu 3: 

a) tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố

b) cho n = 7a5 + 8b4. Biết a - b = 6 và n chia hết cho 9. Tìm a; b

c)tìm phân số tối giản \(\frac{a}{b}\)lớn nhất (a,b\(\in\)N*) sao cho khi chia mỗi phân số 4/75 và 6/165 cho a/b đc kết quả là số tự nhiên

câu 4:

1. trên tia Ox lấy 2 điểm M và N sao cho OM= 3cm, ON= 7cm

a)tính MN

b) lấy điểm P thuộc tia Ox, sao cho MO = 2cm. tính OP

c)trong trường hợp M nằm giữa O và P, CMR P là trung điểm MN

2. cho 2014 điểm trong đó ko có 3 điểm nào thảng hàng. có bao nhiêu tam giác mà các đỉnh là 3 trong 2014 đỉnh đó

Câu 5:

a) cho \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}.CMR:S< \frac{1}{2}\)

b) tìm số tự nhiên n sao cho n + S(n) = 2014. trong đó S(n) là tổng các chữ số của n

0
18 tháng 8 2023

a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)

b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)

c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)

3 tháng 6 2019

Bài 2:

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)

\(=\frac{1}{2004}\)

3 tháng 6 2019

Bài 2

=1/2 x 2/3 ... x 2003/2004

=1/2004

28 tháng 2 2019

giúp mk nhanh nhé

ai nhanh mk tk cho

28 tháng 2 2019

B1

a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):16\frac{2}{3}=0\)

\(1-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=0\)

\(1-\left(x-\frac{11}{6}\right).\frac{3}{50}=0\)

\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1-0\)

\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1\)

\(x-\frac{11}{6}=1:\frac{3}{50}\)

\(x-\frac{11}{6}=\frac{50}{3}\)

\(x=\frac{50}{3}+\frac{11}{6}\)

\(x=\frac{37}{2}\)

b) \(\frac{3}{5}+\frac{5}{7}:x=\frac{1}{3}\)

\(\frac{5}{7}:x=\frac{1}{3}-\frac{3}{5}\)

\(\frac{5}{7}:x=-\frac{4}{15}\)

\(x=\frac{5}{7}:\left(-\frac{4}{15}\right)\)

\(x=-\frac{75}{28}\)

c) \(\left(4\frac{1}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)

\(\left(\frac{9}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)

\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{9}.\frac{7}{4}\)

\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{2}\)

\(\frac{2}{5}.x=\frac{9}{2}-\frac{11}{2}\)

\(\frac{2}{5}.x=-1\)

\(x=-1:\frac{2}{5}\)

\(x=-\frac{5}{2}\)

B2

a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{6}\right).24:5-\frac{9}{22}:\frac{15}{121}\)

\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{2}{6}\right).24:5-\frac{9}{22}.\frac{121}{15}\)

\(=\frac{7}{6}.24:5-\frac{33}{10}\)

\(=28:5-\frac{33}{10}\)

\(=\frac{28}{5}-\frac{33}{10}\)

\(=\frac{56}{10}-\frac{33}{10}\)

\(=\frac{23}{10}\)

b) \(\frac{5}{14}+\frac{18}{35}+\left(1\frac{1}{4}-\frac{5}{4}\right):\left(\frac{5}{12}\right)^2\)

\(=\frac{25}{70}+\frac{36}{70}+\left(\frac{5}{4}-\frac{5}{4}\right):\frac{25}{144}\)

\(=\frac{61}{70}+0:\frac{25}{144}\)

\(=\frac{61}{70}+0\)

\(=\frac{61}{70}\)

30 tháng 10 2016

Bài 1:

a) Ta có:

\(3,2\cdot x+\left(-1,2\right)\cdot x+2,7=-4,9\)

\(\Rightarrow\left[3,2+\left(-1,2\right)\right]\cdot x=\left(-4,9\right)-2,7\)

\(\Rightarrow2x=-7,6\)

\(\Rightarrow x=\left(-7,6\right):2\)

\(\Rightarrow x=-3,8\)

Vậy \(x=-3,8\)

b) Ta có:

-5,6.x+2,9.x-3,86=-9,8

=>[(-5,6)+2,9].x=(-9,8)+3,86

=>(-2,7).x=-5,94

=>x=(-5,94):(-2,7)

=>x=2,3

Vậy x=2,2

30 tháng 10 2016

vậy còn bài 2 đâu bạn

 

8 tháng 9 2016

Câu 1:

a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)

    \(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)

    \(=\frac{1}{2}-\frac{4}{3}\)

     \(=-\frac{5}{6}\)

b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)

    \(=7+\frac{1}{12}+3-\frac{1}{12}-5\)

    \(=5\)

8 tháng 9 2016

Câu 2:

\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)

\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)

\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)

           Vậy -1\(\le\)x<7

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)

20 tháng 11 2016

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

20 tháng 11 2016

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y