\(27\left(13-16\right)-16\left(13-27\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)+\frac{1}{2}\)
\(=1+1+\frac{1}{2}\)
\(=\frac{5}{2}\)
#)Giải :
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\frac{1}{2}+\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)\)
\(=\frac{1}{2}+1+1\)
\(=2\frac{1}{2}=\frac{5}{2}\)
\(a,=\dfrac{3^6\cdot5^4\cdot9^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+9^6\cdot5^6}=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\\ =\dfrac{3^{13}\cdot5^4\cdot2}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
\(b,=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}\cdot\dfrac{16}{3}\right)^3}{2^7\cdot5^2+2^9}=\dfrac{2^7+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{2^7+4^3\cdot3^3}{2^7\cdot29}=\dfrac{2^6\left(2+3^3\right)}{2^7\cdot29}=\dfrac{1}{2}\)
a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)
Ta có
\(\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)^2\)
\(=27+10\sqrt{2}+27-10\sqrt{2}-2\sqrt{\left(27+10\sqrt{2}\right)\left(27-10\sqrt{2}\right)}\)
\(=54-2\sqrt{529}=8\)
\(\Rightarrow\) \(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}=\sqrt{8}=2\sqrt{2}\)
Xét tử số
\(\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}\)
\(=\left(\sqrt{27+10\sqrt{2}}.\sqrt{27-10\sqrt{2}}\right)\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23.2\sqrt{2}=46\sqrt{2}\)
Lại có \(\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2\)
\(=\sqrt{13}-3+\sqrt{13}+3+2\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right)}\)
\(=2\sqrt{13}+2\sqrt{4}=2\sqrt{13}+4\)
ta bình phương mẫu số
\(\left(\frac{\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}}{\sqrt{\sqrt{13}+2}}\right)^2=\frac{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2}{\sqrt{13}+2}\)
\(=\frac{2\sqrt{13}+4}{\sqrt{13}+2}=2\)
Vậy mẫu \(=\sqrt{2}\)
Vậy \(x=\frac{46\sqrt{2}}{\sqrt{2}}=46\) thay vào ta đc A = 92880
\(x=\frac{\left(5+\sqrt{2}\right)^2\sqrt{\left(5-\sqrt{2}\right)^2}-\left(5-\sqrt{2}\right)^2\sqrt{\left(5+\sqrt{2}\right)^2}}{\frac{\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}-2\right)}+\sqrt{\left(\sqrt{13}+3\right)\left(\sqrt{13}-2\right)}}{\sqrt{13-4}}}\)
\(=\frac{\left(5+\sqrt{2}\right)\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)-\left(5-\sqrt{2}\right)\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}{\frac{\sqrt{19-5\sqrt{13}}+\sqrt{7+\sqrt{13}}}{3}}\)
\(=\frac{69\left(5+\sqrt{2}-5+\sqrt{2}\right)}{\frac{1}{\sqrt{2}}\left(\sqrt{38-10\sqrt{13}}+\sqrt{14+2\sqrt{13}}\right)}=\frac{276}{\sqrt{\left(5-\sqrt{13}\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}}\)
\(=\frac{276}{5-\sqrt{13}+\sqrt{13}+1}=46\)
\(\Rightarrow A=...\)
27(13-16)-16(13-27)=-81--224=143
27 ( 13 - 16 ) - 16( 13 - 27)
= 27 x 13 - 27 x 16 - 16 x 13 + 16 x 27
= 27 x 13 - 16 x 13 = 13 x ( 27 - 16 ) = 13 x 11 = 143
k đúng cho mình nha