Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{-40\sqrt{3}+30\sqrt{2}}{-4\sqrt{3}+3\sqrt{2}}=10\)
\(A=\dfrac{10.\sqrt{18}+5\sqrt{3}-15\sqrt{27}}{\sqrt{3}.\left(\sqrt{6}-4\right)}\)
\(A=\dfrac{10.\sqrt{3.6}+5\sqrt{3}-15.\sqrt{3.3^2}}{\sqrt{3}.\left(\sqrt{6}-4\right)}\)
\(A=\dfrac{10.\sqrt{3}.\sqrt{6}+5\sqrt{3}-15.\sqrt{3}.3}{\sqrt{3}\left(\sqrt{6}-4\right)}\)
\(A=\dfrac{\sqrt{3}.\left(10.\sqrt{6}+5-15.3\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}\)
\(A=\dfrac{10.\sqrt{6}+5-45}{\sqrt{6}-4}=\dfrac{10.\sqrt{6}-40}{\sqrt{6}-4}\)
\(A=\dfrac{10.\left(\sqrt{6}-4\right)}{\sqrt{6}-4}=10\)
Vậy \(A=10\)
Chúc bạn học tốt!!!
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)