\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\)
tính hợp lý:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{3}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\) \(\frac{3}{4}\) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=2-\frac{2}{101}=\frac{200}{101}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(B=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(B=2.\frac{100}{101}=\frac{200}{101}\)
Ta có :
M= \(\dfrac{3+3-3+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4+4-4+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)= \(\dfrac{3+3-3}{4+4-4}=\dfrac{3}{4}\)
b) Nhận xét thấy: \(\dfrac{2}{1.3}=1-\dfrac{1}{3};\dfrac{1}{3.5}=\dfrac{1}{3}-\dfrac{1}{5};...\)
Ta có:
B= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
B= 1- \(\dfrac{1}{101}\)= \(\dfrac{100}{101}\)
Vậy B= \(\dfrac{100}{101}\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)
2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)
= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
=1-\(\dfrac{1}{101}\)=...........
mk làm vậy thôi nha
thông cảm
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)
=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)
tương tự
\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)
\(\dfrac{2}{1\cdot3}=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)
\(\dfrac{2}{5\cdot7}=\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{7}{35}-\dfrac{5}{35}=\dfrac{2}{35}\)
và cứ như thế đến số cuối
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{19.21}\)
\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{19.21}\right)\)
\(=2\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(=2\left(1-\dfrac{1}{21}\right)=2.\dfrac{20}{21}=\dfrac{40}{21}\)
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\\ =\dfrac{4}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =2.\left(1-\dfrac{1}{101}\right)\\ =2.\dfrac{100}{101}\\ =\dfrac{200}{101}\)
`4/1.3+4/3.5+4/5.7+...+4/99.101`
`=2(2/1.3+2/3.5+2/5.7+...+2/99.101)`
`=2(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)`
`=2(1-1/101)`
`=2. 100/101`
`=200/101`