K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

Phiền bạn xem lại đề 1 lần!

2 tháng 6 2016

đề đúng mà nhỉ

19 tháng 4 2018

ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)

=>(*) đúng với giá trị x=1

Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)

=> 0.f(1)=5.f(9) =>f(9)=0

=> x=9 là 1 nghiệm của f(x)

Thay f(9)=0 vào (*) ta được 

(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)

=>8.0=13.f(17) => 0=13.f(17)

=> f(17)=0

=>17 là 1 nghiệm của f(x)

vậy có ít nhất 1 nghiệm là số nguyên tố

tk mk nha bn 

*****Chúc bạn học giỏi*****

2 tháng 5 2021
Đéo biết hoặc không biết. ok!!
9 tháng 2 2022

Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...

Giả sử n=1 ta có: 

\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)

Giả sử n=2 ta có: 

\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)

Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\) 

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)