SOS
bài 1: chứng minh
Sn = 12 + 22 + 32 + ... + n2 = n.(n + 1).(2n+1)/1
bài 2: tìm x biết
a) (x+1) + (x+2) + (x+3) + ... +(x+10) = 5070
b) 1 + 2 + 3 + ... + x = 820
❤mong mn giúp mình ạ ❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Bài 2:
a)|x| < 3
x\(\in\){-2;-1;0;1;2}
b)|x - 4 | < 3
x\(\in\){ 6 ; 5 ; 4 ; 3 ; 2 }
c) | x + 10 | < 2
x\(\in\){ -2 ; -10 }
Bài 1:
A = 1 + 2 - 3 + 4 + 5 - 6 +...+98 - 99
A = (1 + 4 + 7 +...+97) + [(2-3)+(5-6)+...+(98-99)]
A = 1617 + [(-1)+(-1)+...+(-1)]
A = 1617 + (-49)
A = +(1617-49) = A = 1568
B = - 2 - 4 + 6 - 8 + 10 + 12 - .... + 60
B =
2)
a) \(x\in\left\{2;1;0;-1;-2\right\}\)
b) \(x\in\left\{6;-6;5;-5;4\right\}\)
c) \(x\in\left\{-9;-11;-10\right\}\)
3)
\(\left(a;b\right)\in\left\{\left(0;1\right);\left(0;-1\right);\left(1;0\right);\left(-1;0\right)\right\}\)
Bài 1
Ta có:\(\left(x^2-x+a\right)\left(x+1\right)=x^3+x^2-x^2-x+ax+a=x^3-x\left(a-1\right)+a\)
Khi đó:
\(x^3+x\left(1-a\right)+a=bx^2+cx+2\)
Do đó \(1-a=c;a=2;b=0\Rightarrow a=2;b=0;c=-1\)
Bài 2:
\(A=\left(n^2+2n-5\right)\left(n+2\right)-2n^3+n+10\)
\(=n^3+2n^2+2n^2+4n-5n-10-2n^3+n+10\)
\(=-n^3+4n^2\)
\(=n^2\left(4-n\right)\)
Lập luận với n chẵn thì cái trên luôn chia hết cho 8
1. ( x2 - x + a )( x + 1 ) = x3 + bx2 + cx + 2
<=> x3 + x2 - x2 - x + ax + a = x3 + bx2 + cx + 2
<=> x3 + 0x2 + ( a - 1 )x + a = x3 + bx2 + cx + 2
<=> \(\hept{\begin{cases}b=0\\a-1=c\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\\c=1\end{cases}}\)
2. n chẵn => n có dạng 2k ( \(k\inℕ^∗\))
Thế vào ta được :
A = [ ( 2k )2 + 2.2k - 5 )( 2k + 2 ) - 2(2k)3 + 2k + 10
A = ( 4k2 + 4k - 5 )( 2k + 2 ) - 16k3 + 2k + 10
A = 8k3 + 16k2 - 2k - 10 - 16k3 + 2k + 10
A = -8k3 + 16k2 = -8k2(k-2) \(⋮\)8
=> A chia hết cho 8 với mọi n chẵn ( đpcm )
1: Ta có: \(20-2\left(x+4\right)=4\)
\(\Leftrightarrow2\left(x+4\right)=16\)
\(\Leftrightarrow x+4=8\)
hay x=4
5: Ta có: \(\left(x+1\right)^3=27\)
\(\Leftrightarrow x+1=3\)
hay x=2
a) \(\left(x+3\right)\left(x+y-5\right)=7\)
mà \(x,y\)là số tự nhiên nên \(x+3,x+y-5\)là các ước của \(7\).
Ta có bảng sau:
x+3 | 1 | 7 |
x+y-5 | 7 | 1 |
x | -2 (l) | 4 |
y | 2 |
Vậy phương trình có nghiệm tự nhiên là: \(\left(4,2\right)\).
b) \(\left(2x+1\right)\left(y-3\right)=10\)
mà \(x,y\)là số tự nhiên, \(2x+1\)là số tự nhiên lẻ, \(2x+1,y-3\)là ước của \(10\)nên ta có bảng sau:
2x+1 | 1 | 5 |
y-3 | 10 | 2 |
x | 0 | 2 |
y | 13 | 5 |
Vậy phương trình có nghiệm tự nhiên là: \(\left(0,13\right),\left(2,5\right)\).
c) \(\left(x+1\right)\left(2y-1\right)=12\)
mà \(x,y\)là số tự nhiên, \(2y-1\)là số tự nhiên lẻ, \(x+1,2y-1\)là ước của \(12\)nên ta có bảng sau:
2y-1 | 1 | 3 |
x+1 | 12 | 4 |
y | 1 | 2 |
x | 11 | 3 |
Vậy phương trình có nghiệm tự nhiên là \(\left(11,1\right),\left(3,2\right)\).
d) \(x+6=y\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=5\)
mà \(x,y\)là số tự nhiên nên \(x+1,y-1\)là ước của \(5\).Ta có bảng sau:
x+1 | 1 | 5 |
y-1 | 5 | 1 |
x | 0 | 4 |
y | 6 | 2 |
Vậy phương trình có nghiệm tự nhiên là: \(\left(0,6\right),\left(4,2\right)\).
Bài 1 :
a) 72x-1 = 343
=> 72x-1 = 73
=> 2x - 1 = 3 => 2x = 4 => x = 2
b) (7x - 11)3 = 25.32 + 200
=> (7x - 11)3 = 32.9 + 200
=> (7x - 11)3 = 488
xem kĩ lại đề này :vvv
c) 174 - (2x - 1)2 = 53
=> (2x - 1)2 = 174 - 53
=> (2x - 1)2 = 174 - 125 = 49
=> (2x - 1)2 = (\(\pm\)7)2
=> \(\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Mà x \(\in\)N nên x = 4( thỏa mãn điều kiện)
Bài 2 :
a) x5 = 32 => x5 = 25 => x = 2
b) (x + 2)3 = 27
=> (x + 2)3 = 33
=> x + 2 = 3 => x = 3 - 2 = 1
c) (x - 1)4 = 16
=> (x - 1)4 = 24
=> x - 1 = 2 => x = 3 ( vì đề bài cho x thuộc N nên thỏa mãn)
d) (x - 1)8 = (x - 1)6
=> (x - 1)8 - (x - 1)6 = 0
=> (x - 1)6 [(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^6=0\\\left(x-1\right)^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=\left(\pm1\right)^2\end{cases}}\)
+) x - 1 = 1 => x = 2 ( tm)
+) x - 1 = -1 => x = 0 ( tm)
Vậy x = 1,x = 2,x = 0
Bài 1 :
A = 12 + 22 + 32 +....+n2
A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)
A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n
A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n
A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]
A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]
A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)
A =(n+1)n/2 + 1/3.(n-1)n(n+1)
A = n(n+1)[1/2 + 1/3 .(n-1)]
A = n.(n+1) \(\dfrac{3+2n-2}{6}\)
A= n.(n+1)(2n+1)/6
Bài 2 :
a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070
(x+10 +x+1).{( x+10 - x -1): 1 +1):2 = 5070
(2x + 11)10 : 2 = 5070
( 2x + 11)5 = 5070
2x+ 11 = 5070:5
2x = 1014 - 11
2x = 1003
x = 1003 :2
x = 501,5
b, 1 + 2 + 3 +...+x = 820
( x + 1)[ (x-1):1 +1] : 2 = 820
(x +1).x = 820 x 2
(x +1).x = 1640
(x +1) .x = 40 x 41
x = 40