chung minh rang voi moi so nguyen n thi n(n^2+1)(n^2+4) chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)
10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1)
Vậy ...
T I C K cho mình nha
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
Vì n là số tự nhiên => n có dạng 2k ; 2k+1
Ta có:
Với n=2k
=> (n+5).(n+10) = (2k+5).(2k+10)=(2k+5).2.(k+5) chia hết cho 2
Với n=2k+1
=> (n+5).(n+10)=(2k+1+5).(2k+1+10)=(2k+6).(2k+11)=2.(k+3).(2k+11) chia hết cho 2
=> Với mọi số tự nhiên n thì (n+5).(n+10) luôn chia hết cho 2
ta có n^2+n+6
=n^2+2.n.1/2+(1/2)^2+6-(1/2)^2
=(n+1/2)^2+23/4
ta có (n+1/2)^2 không chia hết cho 5(1)
23/4 không chia hết cho 5(2)
từ (1),(2) suy ra(n+1/2)^2+23/4 không chia hết cho 5
n3-n=n(n2-1)=n(n-1)(n+1)
Do n;n+1;n-1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết chio 2 và 1 số chia hết cho 3
=>n(n-1)(n+1) chia hết cho 6