K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>BA=BN; MA=MN

=>BM là trung trực của AN

=>BM vuông góc AN

b: Xét ΔMBC có

MN vừa là đường cao, vừa là trung tuyến

nên ΔMBC cân tại M

=>góc ACB=góc MBC=1/2gócABC

=>góc ABC=60 độ; góc ACB=30 độ

DD
28 tháng 3 2021

Bạn tự vẽ hình nhé. 

a) Xét tam giác \(ABM\)và tam giác \(NBM\)có: 

\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)

\(MB\)cạnh chung

\(\widehat{MBA}=\widehat{MBN}\)(vì \(BM\)là tia phân giác \(\widehat{ABN}\))

suy ra \(\Delta ABM=\Delta NBM\)(cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{AMB}=\widehat{NMB}\)(Hai góc tương ứng) 

suy ra \(MB\)là tia phân giác góc \(AMN\).

b) Vì \(NK//BM\)nên \(\widehat{BMN}=\widehat{MNK}\)(hai góc so le trong) 

và \(\widehat{BMA}=\widehat{NKM}\)(Hai góc đồng vị) 

mà \(\widehat{AMB}=\widehat{NMB}\)(theo a)) 

suy ra \(\widehat{MNK}=\widehat{NKM}\)suy ra tam giác \(MNK\)cân tại \(M\).

c) Vì \(\Delta ABM=\Delta NBM\)nên

+) \(MN=MA\)(Hai cạnh tương ứng) suy ra \(M\)thuộc đường trung trực của \(AN\).

+) \(BN=BA\)(Hai cạnh tương ứng) suy ra \(B\)thuộc đường trung trực của \(AN\).

suy ra \(BM\)là đường trung trực của \(AN\)\(\Rightarrow BM\perp AN\).

mà \(NK//BM\)suy ra \(AN\perp NK\).

Trong tam giác vuông \(ANK\)\(AN< AK\)(cạnh góc huyền lớn hơn cạnh góc vuông).

d) \(K\)là trung điểm \(MC\)suy ra \(MK=\frac{1}{2}MC\)mà \(MN=MK\)(do tam giác \(MNK\)cân tại \(M\))

suy ra \(MN=\frac{1}{2}MC\).

Trong tam giác vuông, cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\).

Do đó \(\widehat{C}=30^o\).

Vậy tam giác vuông \(ABC\)cần thêm điều kiện \(\widehat{C}=30^o\).

8 tháng 8 2018

bạn vẽ hình giúp mình được không?

18 tháng 9 2023

a)

Xét 2 tam giác vuông AMC và AMB có:

AM chung

BM=CM (gt)

=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)

=> AC=AB (2 cạnh tương ứng)

=> Tam giác ABC cân tại A

b)

Kẻ MH vuông góc với AB (H thuộc AB)

     MG vuông góc với AC (G thuộc AC)

Xét 2 tam giác vuông AHM và AGM có:

AM chung

\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)

=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)

=> HM=GM (2 cạnh tương ứng)

Xét 2 tam giác vuông BHM và CGM có:

BM=CM (giả thiết)

MH=MG(chứng minh trên)

=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)

=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)

=>Tam giác ABC cân tại A.

18 tháng 9 2023

Bạn ơi copy ghi tham khảo

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

29 tháng 12 2015

tích đi sau mình làm cho

t

29 tháng 12 2015

tại sao tia BI cắt Ac tại M phải là N 

Mà ở đầu bài cậu nói là trên cạnh BC lấy điểm M sao cho MA=BM