cho A = \(\frac{abc}{a+b+c}\)(abc là số có 3 chữ số )
tìm a,b,c để A có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm có dạng abcTa có: abc = 11 x (a+b+c)=> a x 100 + b x 10 + c = 11 x a + 11 x b + 11 x c=> 89 x a = b + 10 x cVì b; c lớn nhất là 9 nên a = 1 (Duy nhất=1)
Khi đó: 89 = b + 10 x c=> b = 89 - 10 x cVì b không thể số âm và b không thể có 2 chữ số
Nên c = 8 (Chỉ có thể bằng 8).Khi đó b = 89 - 10 x 8 = 9 => b = 9Vậy số cần tìm là 198
b) http://olm.vn/hoi-dap/question/113503.html
a) \(k=\frac{abc}{a+b+c}=\frac{100a+10b+c}{a+b+c}\le\frac{100a+100b+100c}{a+b+c}=100\)
=> k lớn nhất = 100 khi 10b = 100b và c = 100c
=> b = 0 và c = 0
=> tỉ số k lớn nhất khi b = c = 0; a tùy ý => các số đó là 100; 200; ...900
\(A=\frac{abc}{a+b+c}=\frac{100a+10b+c}{a+b+c}=\frac{\left(a+b+c\right)+99a+9b}{a+b+c}=1+9.\frac{11a+b}{a+b+c}\)
A nhỏ nhất \(\Rightarrow\frac{11a+b}{a+b+c}\) nhỏ nhất => c lớn nhất => c = 9
Khi đó \(A=1+9.\frac{11a+b}{a+b+9}=1+9.\frac{a+b+9+10a-9}{a+b+9}=1+9+9.\frac{10a-9}{a+b+9}\)
Ta có \(10a-9\ge10.1-9>0\)
A nhỏ nhất \(\Rightarrow\frac{10a-9}{a+b+9}\) nhỏ nhất => b lớn nhất => b = 9
Khi đó: \(A=10+9.\frac{10a-9}{a+9+9}=10+9.\frac{10\left(a+18\right)-9-10.18}{a+18}=10+90-9.\frac{189}{a+18}\)
A nhỏ nhất => \(-9.\frac{189}{a+18}\)nhỏ nhất => \(\frac{189}{a+18}\) lớn nhất => a nhỏ nhất => a = 1
Vậy: A nhỏ nhất khi a = 1; b = c = 9.