giải phương trình : (x^2+x+4)^2+8x(x^2+x+4)+16x^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
*vn:vô nghiệm.
a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).
b. \(16x^2-8x+5=0\)
\(\Leftrightarrow16x^2-8x+1+4=0\)
\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)
-Vậy S=∅.
c. \(2x^3-x^2-8x+4=0\)
\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)
-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).
d. \(3x^3+6x^2-75x-150=0\)
\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)
-Vậy \(S=\left\{-2;\pm5\right\}\)
\(y^2+4^x+2y-2^{x+1}+2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(4^x-2^{x+1}+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}\)
\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
\(\Leftrightarrow\frac{x^2+4x+4+2}{x+2}+\frac{x^2+16x+64+8}{x+8}=\frac{x^2+8x+16+4}{x+4}+\frac{x^2+12x+36+6}{x+6}\)
\(\Leftrightarrow2x+10+\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)
\(\Leftrightarrow\frac{2}{x+2}+\frac{8}{x+8}=\frac{4}{x+4}+\frac{6}{x+6}\)
Tới đây quy đồng làm tiếp nhé
=>\(\frac{\left(x+2\right)^2+2}{x+2}+\frac{\left(x+8\right)^2+8}{x+8}\)=\(\frac{\left(x+4\right)+4}{x+4}+\frac{\left(x+6\right)^2+6}{x+6}\)
=>2x+10+\(\frac{2}{x+2}+\frac{8}{x+8}\)=2x+10+\(\frac{4}{x+4}+\frac{6}{x+6}\)
=>-x\(\left(\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+8}\right)\)=0
=>\(\orbr{\begin{cases}x=0\\\frac{1}{x+2}-.....+\frac{1}{x+8}=0\end{cases}}\)
Voi \(\frac{1}{x+2}-....\)=0 ta co
Dat x+5=t
=>\(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}\)=0
=> \(2t\left(\frac{1}{t^2-1}+\frac{1}{t^2-9}\right)=0\)
=>t=0
=>x=-5
Vay phuong trinh co nghiem x=0;-5
=> \(\frac{(x+2)^2+2}{x+2}+\frac{(x+8)^2+8}{x+8}=\frac{(x+4)+4}{x+4}+\frac{(x+6)^2+6}{x+6}\)
=> 2x + 10 + \(\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)
=>-x \((\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}-\frac{1}{x+8})=0\)
\(x=0\)
\(=>\orbr{\frac{1}{x+2}}-.....+\frac{1}{x+8}=0\)
Với \(\frac{1}{x+2}-...=0\). Ta có :
Đặt x + 5 = t
=> \(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}=0\)
\(=>2t(\frac{1}{t^2-1}+\frac{1}{t^2-9})=0\)
=> t = 0
=> x = -5
Vậy phương trình có nghiệm x= 0 ; - 5
\(\Leftrightarrow\sqrt{x^2\left(x^2-8x+16\right)}+\left|\left(x-4\right)^2\right|=4\\ \)
\(\Leftrightarrow\left|x\right|\sqrt{\left(x-4\right)^2}+\left(x-4\right)^2=4\)
\(\Leftrightarrow\left|x\left(x-4\right)\right|+x^2-8x+16=4\)(1)
- Nếu \(0\le x\le4\)thì x(x - 4) <= 0; (1) <=> 4x - x2 + x2 - 8x + 12 =0 <=> 4x = 12 <=> x = 3 (trong khoảng đang xét)
- Nếu \(\orbr{\begin{cases}x< 0\\x>4\end{cases}}\)thì x(x-4) > 0 (1) <=> x2 - 4x + x2 - 8x + 12 = 0 <=> 2x2 -12x + 12 = 0 <=> x2 - 6x +6 = 0 \(\Leftrightarrow\orbr{\begin{cases}x_1=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{cases}}\)loại nghiệm x1 vì không thuộc khoảng đang xét.
KL: PT có 2 nghiệm là x = 3 và x = \(3+\sqrt{3}\).
<=> (x2 +x +4)2 + 2 . 4x(x2+ x + 4) + (4x)2 = 0
<=> ( x2 + x+ 4 +4x )2 = 0
<=> [(x2 + x) + (4 +4x)] =0
<=> [x(x+1) + 4(1+x)] =0
<=> (x+1) + (x+4) =0