Chứng minh :\(A=\frac{11}{29}+\frac{9}{17}+\frac{10}{19}< 2\)
Lưu ý: Không Được tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Trong 3 phân số thì \(\frac{9}{17}\)là phân số lớn nhất
\(\Rightarrow\frac{9}{17}+\frac{9}{17}+\frac{9}{17}>\frac{11}{29}+\frac{9}{17}+\frac{10}{19}\)
\(\Rightarrow\frac{9}{17}\times3>A\)
Mà \(\frac{9}{17}\times3=\frac{27}{17}< \frac{34}{17}=2\)
\(\Rightarrow2>\frac{9}{17}\times3>A\)
\(\Rightarrow A< 2\)
Ta có:\(\frac{11}{29}\)<1
\(\frac{9}{17}\)<1 và\(\frac{10}{19}\)<1
=>A=\(\frac{11}{29}+\frac{9}{17}+\frac{10}{19}\)<1
=>A<2
\(A=\frac{11}{29}+\frac{9}{17}+\frac{9}{19}+\frac{1}{19}\)
Tất cả ps đều nhỏ hơn 1/2
=> A<2
ung ho nhe
vi \(\frac{11}{29}\)<\(\frac{11}{15}\);\(\frac{9}{17}\)<\(\frac{9}{15}\);\(\frac{10}{19}\)<\(\frac{10}{15}\)
suy ra\(\frac{11}{29}+\frac{9}{17}+\frac{10}{19}< \frac{11}{15}+\frac{9}{15}+\frac{10}{15}\)
hay A<\(\frac{30}{15}\)hay A<2
vì các tử trên đều nhỏ hơn mẫu
mà các tử bé hơn mẫu thì đều bé hơn 1 nên A sẽ bé hơn 2
to chi giai duoc 1cach la khi phan mau so khong gap2lan tu so
a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)
\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)
Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)
\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)
\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow F< \frac{3}{2}\)
\(\Rightarrow2A< 4+\frac{3}{2}\)
\(\Rightarrow2A< \frac{11}{2}\)
\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)
2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)
\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)
\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)
\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)
Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)
\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)
\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )
\(\Rightarrow2D< 6\)
\(\Rightarrow D< 3\)
\(\Rightarrow2B< 11+3\)
\(\Rightarrow2B< 14\)
\(\Rightarrow B< 7\left(đpcm\right)\)
Ta có : Tất cả số trên đều < 1
3 số < 1 cộng lại thì < 2
Thế thôi
ta co 2=29/29+17/17+19/19
vi 11<29 =>11/29<29/29 (1)
9<17 =>9/17<17/17 (2)
10<19 =>10/19<19/19 (3)
tu (1),(2),(3) =>11/29+9/17+10/19<29/29+17/17+19/19
=>A<2