K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Ta có : Tất cả số trên đều < 1

3 số < 1 cộng lại thì < 2

Thế thôi

28 tháng 3 2017

ta co 2=29/29+17/17+19/19

vi 11<29 =>11/29<29/29  (1)

   9<17 =>9/17<17/17      (2)

    10<19 =>10/19<19/19  (3)

tu (1),(2),(3) =>11/29+9/17+10/19<29/29+17/17+19/19

                  =>A<2

30 tháng 4 2017

Ta có: Trong 3 phân số thì \(\frac{9}{17}\)là phân số lớn nhất

\(\Rightarrow\frac{9}{17}+\frac{9}{17}+\frac{9}{17}>\frac{11}{29}+\frac{9}{17}+\frac{10}{19}\)

\(\Rightarrow\frac{9}{17}\times3>A\)

\(\frac{9}{17}\times3=\frac{27}{17}< \frac{34}{17}=2\)

\(\Rightarrow2>\frac{9}{17}\times3>A\)

\(\Rightarrow A< 2\)

29 tháng 2 2016

Ta có:\(\frac{11}{29}\)<1

\(\frac{9}{17}\)<1 và\(\frac{10}{19}\)<1

=>A=\(\frac{11}{29}+\frac{9}{17}+\frac{10}{19}\)<1

=>A<2

23 tháng 2 2017

\(A=\frac{11}{29}+\frac{9}{17}+\frac{9}{19}+\frac{1}{19}\)

Tất cả ps đều nhỏ hơn 1/2

=> A<2

ung ho nhe

23 tháng 2 2017

vi \(\frac{11}{29}\)<\(\frac{11}{15}\);\(\frac{9}{17}\)<\(\frac{9}{15}\);\(\frac{10}{19}\)<\(\frac{10}{15}\)

suy ra\(\frac{11}{29}+\frac{9}{17}+\frac{10}{19}< \frac{11}{15}+\frac{9}{15}+\frac{10}{15}\)

hay A<\(\frac{30}{15}\)hay A<2

21 tháng 3 2017

vì các tử trên đều nhỏ hơn mẫu

mà các tử bé hơn mẫu thì đều bé hơn 1 nên A sẽ bé hơn 2

6 tháng 2 2018

to chi giai duoc 1cach la khi phan mau so khong gap2lan tu so

6 tháng 2 2018

Trình bày thử xem!

27 tháng 7 2019

a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)

\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)

Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)

\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)

\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow F< \frac{3}{2}\)

\(\Rightarrow2A< 4+\frac{3}{2}\)

\(\Rightarrow2A< \frac{11}{2}\)

\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)

27 tháng 7 2019

2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)

\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)

\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)

\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)

Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)

\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)

\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )

\(\Rightarrow2D< 6\)

\(\Rightarrow D< 3\)

\(\Rightarrow2B< 11+3\)

\(\Rightarrow2B< 14\)

\(\Rightarrow B< 7\left(đpcm\right)\)