cho tam giác abc nhọn (ab<ac). kẻ đường cao ah của tam giác abc. trên hc lấy điểm e sao cho he=hb. gọi i là trung điểm của ac. trên tia đối của tia ie lấy điểm f sao cho if=ie a, chứng minh tam giác ahb = tam giác ahe b, chứng minh à vuông góc với ah c,so sánh cf và ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
=>ΔAHB=ΔAHE
b: Xét tứ giác AECF có
I là trung điểm chung của AC và EF
=>AECF là hình bình hành
=>AF//EC
=>AF vuông góc AH
c: AECF là hình bình hành
=>CF=AE>HA